有丝分裂的染色质相位过渡可防止微管穿孔

  本研究中使用的所有细胞系已定期测试对支原体污染的阴性。这项研究中的所有细胞系均来自先前在参考文献中描述的HELA“京都 ”细胞系 。51. The cells were cultured in Dulbecco’s modified Eagle medium (DMEM) (IMP/IMBA/GMI Molecular Biology Service/Media Kitchen) containing 10% (v/v) fetal bovine serum (FBS; Gibco, 10270-106, 2078432), 1% (v/v) penicillin–streptomycin (Sigma-Aldrich), 1% (v/v)谷氨酸(Gibco; 35050038)和根据各自的表达构建体选定的抗生素:Blasticidin s(6 µg ML -1 ,Thermo Fisher Scientific) ,紫霉素(0.5 µg mL -1,Calbiochem),Hygromycin B(0.25 mg ml -ml -1)和G41和0.5 mg -ML(0.25 mg ml -ML -1)(0.5 ml -g41)(0.5 mg ml) 。在5%含CO2的气氛中 ,在37°C培养HeLa细胞。通过用麦克里标记的组蛋白2b的稳定表达可视化染色质(图2a-g和4以及扩展数据图2 、6e,7a – h,8e – h和10)或Aurora b-fret传感器(CFP/yfp)(cfp/yfp)(扩展数据图8a – h)(图8a – h)或通过标记为HOECH的3333333333333333333333333342H1399)(图1A – C ,2M和3A,C和扩展数据图1A,D ,F,3A,C ,E,G,4A – D ,5A ,C,C,E和9A ,C,C,E ,E,G,I ,K)。通过稳定表达具有N端标记的EGFP-α-微管蛋白融合(扩展数据图10a,c)或用Sir-Tubulin52标记(螺旋色素,SC002 ,图1a和4a,图1A和4A),并扩展数据图 。(50 nm))52。通过稳定表达N端标记的EGFP – CENP-A融合(图4A)或N端标记的MEGFP-CENP-A融合(扩展数据图2A – C和6E) ,可以观察到中心粒。通过内源性EGFP – KI-6731的稳定表达(图2E – G)或通过Ki-67-Mneongreen的瞬时表达 ,可以在活细胞中看到KI-67(图8M,N) 。为了确定凋亡指数,用PSIVA53和碘化物podidium(PI)(Bio-Rad ,Apo004)染色细胞(扩展数据图3E和7A,B)。   Live-cell imaging was performed in DMEM containing 10% (v/v) FBS (Gibco, 10270-106, 2078432), 1% (v/v) penicillin–streptomycin (Sigma-Aldrich) and 1% (v/v) GlutaMAX (Gibco; 35050038) but omitting phenol red and riboflavin to reduce autofluorescence (imaging介质)51。在75 cm2或175 cm2 nunc easyflask细胞培养瓶中(Thermo Fisher Scientific)或96孔,48孔 ,12孔或6孔Nunclon Delta表面多层植物(Thermo Fisherific)中,将细胞生长在10 cm或15 cm的Cellstar(Greiner)菜肴中,在75 cm2或175 cm2 nunc easyflask cell培养瓶中(Thermo Fisher Scientific) 。对于活细胞成像 ,在Nunc Labtek II室内盖玻片(Thermo Fisher Scientific)上培养细胞,在µ-slide 8孔盖盖玻片(IBIDI)上,在µ-dish 35 mm高成像盘中 ,带有聚合物或玻璃底部(Ibidi)。   通过随机质粒整合(对于转染条件,请参见下文)或慢胞病毒载体系统对啮齿动物限制的小鼠生态包膜(RIEP受体系统)产生稳定表达荧光标记的标记蛋白的细胞系。如先前所述,进行了RIEP受体父母细胞系的构建以及随后的表达荧光标记蛋白的稳定细胞系的构建 。   使用CRISPR-CAS9介导的整合方法进行HELA基因组编辑 ,使用嵌合Cas9-人类双子素融合(Cas9 – Hgem)修饰以增强编辑效率55。将单个诱导RNA(SGRNA)克隆到PX330-U6-CHIMERIC_BB-CBH-HSPCAS9-HGEM-P2A-MCHERRY*ABPIL(S. Ameres的礼物)中。为了标记具有可观诱导的DEGRON TAG56的内源性SMC4基因 ,设计了用于靶向蛋白质C末端的修复模板,分别为5'和3'侧面的同源侧面为800和901 bp 。合成了c-末端少女 - 纳洛特词的编码序列的修复模板,包括原始基序的突变 ,被合成为gblock(idt),并将其克隆到质粒PCR2.1中进行扩增 。使用霓虹灯转染系统(Thermo Fisher Scientific)共转染SGRNA/CAS9和同源性修复模板质粒。根据制造商的指南(对于HELA电池:脉冲电压,1.005 V;脉冲宽度 ,35 ms;脉冲数,2)进行转染,使用100 µL尖端比色杯 ,带有10 µg同源性修复模板和10 µg GRNA/CAS9 – HGEM,可用于1×106个细胞。然后,在电穿孔后9天 ,用俄勒冈州绿色挂钩(Promega,g2801)染色细胞池,并使用荧光激活的细胞分选(FACS)分离单个克隆 ,并将其分类为96孔板 。与以前的研究54一样 ,进行了基因分型。   使用SGRNA和同性恋修复模板策略在参考文献中,将OSTIR1(F74G)连接酶的整合到与腺相关的病毒整合位点(AAVS1,指定的安全港指定的座位)以建立SMC4的基因座。57 。E3-泛素连接酶OSTIR1(F74G)的表达通过将其标记为蛋白酶体降解在小分子生长素类似物的情况下 ,可以使降解蛋白降解。将SGRNA克隆到PX330-U6-CHIMERIC_BB-CBH-HSPCAS9-HGEM-P2A-MCHERRY*ABPIL中。为了整合OSTIR1(F74G),分别为5'和3'侧面的804和837 bp长度的ostir1(F74G)-Naptag-Myca1-NLs和同源侧面的同源模板(f74g)集成 。如上所述,进行了SGRNA/CAS9和同源修复模板的共转染。然后 ,在电穿孔后8天,选择6 µg ml -1 blasticidin的转染细胞。通过单细胞稀释到96孔板将单个克隆从稳定池中分离出来 。为了鉴定耗尽SMC4-MAID-HALO的克隆,用1 µM 5-PH-IAA24处理克隆 ,用俄勒冈州绿色Halotag(Promega,G2801)配体染色90分钟,然后使用IQue Screener Plus Plus系统通过流式细胞仪进行分析。   为了表达荧光标记的标记物 ,将各个基因克隆到包含IRES或2A“自切除 ”肽序列的双科载体中,具有抗生素耐药性基因,这些肽序列能够从同一转录物中表达抗蛋白质和抗性基因。为了进行瞬时转染或转染以进行随后的选择和菌落拾取 ,使用X-三分法9 DNA转染试剂(Roche ,6365787001)转染质粒,根据制造商的方案(1 µg质粒,4.5 µL X- X- X------------ x-------------- x---------------- x- tremegene 9中)(1)或PEI(1)或PEI(1)多肌科24765-2 ,4 µg每1 µg质粒的转染试剂) 。对于稳定的表达,使用PEI转染质粒,10 µg质粒 ,用于15 cm的15 cm盘并在抗生素选择之前孵育48小时 。   根据制造商的说明,用Lipofectamine Rnaimax(Invitrogen)交付了小型干扰RNA(siRNA)。使用16 nm自定义的消音器选择siRNA(感官链Caagcuccuccucgccuauugtt,Thermo Fisher Scientific ,包括3'Overhang TT Dinucleotide,以提高效率)。使用16 nm自定义的消音器选择siRNA(感官链GCAAGAUCCUGAAAGAGAUTT,THERMO FISHER SCICENIFIC ,包括3'Overhang tt tt二核苷酸,以提高效率) 。定制的消音器选择Sixwneg(感官链Uacgaccggucuaucguagtt,Thermo Fisher Scientific ,包括3'悬垂的TT二核苷酸 ,以提高效率)用作非目标的siRNA控制。siRNA转染后30小时成像细胞。使用16 nm的终浓度进行KIF22和KIF4A siRNA的共转染 。参考文献中描述了HKID和KIF4A siRNA。22。   为了降解SMC4少的halotag,将细胞在1 µM 5-苯基吲哚-3-乙酸(5-Phiaa)(Bio Academia,30-003)中孵育2.5-3 h 。为了诱导组蛋白高乙酰化 ,将细胞与5 µM TSA58孵育(Sigma-Aldrich,T8552)。为了用单极纺锤体构型在Prometathase中停止细胞,将细胞在5 µM STLC59(ENZO Life Sciences ,ALX-105-011-M500)中孵育2-3小时。为了阻止细胞中的前期,将细胞在Nocodazole(仅用于活细胞成像的200 ng ml-1)中孵育2-3 h,或100 ng ml-1用于显微注射和/或随后的洗涤 。Sigma-Aldrich ,M1404)。Nocodazole冲洗是通过显微镜上的预热成像介质洗涤五次进行的。为了在中期中捕捉细胞以进行显微注射,将细胞与12 µM的蛋黄(R&D系统,I-440-01M)孵育2小时 。为了使细胞同步到G2 -M边界 ,首先将细胞与双胸腺胺块同步,然后是单个RO330660块 。播种后的一天,将细胞转移到含2 mM胸苷的培养基中(Sigma-Aldrich ,T1895)。然后 ,16小时后,用预热培养基洗涤3次细胞并释放8小时。重复胸苷块一次 。然后,将第二个胸腺定释放细胞转移到含有8 µM RO3306(Sigma-Aldrich ,SML0569)的培养基中4小时4小时。G2停滞后,将RO3306除去,并用含有1.5 µm冈田酸的成像培养基(LC Laboratories ,O-5857)洗涤细胞3次。为了诱导细胞凋亡作为凋亡指数测量的阳性对照,用5 µM雄霉素(Sigma-Aldrich,A9789)处理细胞3小时 。为了诱导DNA双链断裂作为DNA损伤测量值的阳性对照 ,用50 ng ml-1新狂唑替汀(Sigma-Aldrich,N9162)处理细胞3小时。   对于所有免疫荧光实验,除了针对乙酰化组蛋白的免疫荧光外 ,在24孔板中的18毫米圆形Menzel盖玻片上生长细胞,该玻璃在Nunc Labtek II室内盖玻璃上进行。对于共同染色的纺锤两极和中心粒,固定细胞并用1×PHEM(60 mm K-Pipes(Sigma-Aldrich) ,pH 6.9 ,25 mm K-Hepes(Sigma-Aldrich)(Sigma-Aldrich),pH 7.4,pH 7.4 ,10 mm Egta(Merck,324626),4mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmgso4·5·5·5·4·5·4·5·4·5·5 (机来 ,)含有0.5%Tween-20(Sigma-Aldrich)和4%无甲醇的甲醛(Thermo Fisher Scientific)10分钟 。将固定反应用10 mM Tris-HCl(Sigma-Aldrich),pH 7.4,在磷酸盐缓冲盐水(PBS)中淬灭 ,再次用PBS洗涤,并在10%正常山羊血清(ABCAM),0.1%Tween-20-20(Sigma-Aldrich)中阻塞1小时。   为了染色乙酰化组蛋白尾巴或细胞周期蛋白B1 ,将细胞固定在含有4%无甲醇甲醛的PBS中(Thermo Fisher Scientific,28906)固定10分钟。将固定在PBS中用10 mM Tris-HCl(Sigma-Aldrich)pH 7.4淬灭5分钟,将细胞用含有0.5%Triton X-100的PB透透15分钟 ,再次用PBS洗涤 ,并用PBS洗涤并使用2%牛血清白蛋白(BSA)(BSA)(BSA)(Sigma-Aldrich)(Sigma-Aldrich,a7030)进行阻塞 。(Sigma-Aldrich)持续1小时。抗体稀释缓冲液由PBS与2%BSA(Sigma-Aldrich,A7030)组成 ,含有0.1%Tween-20(Sigma-Aldrich)。   对于γH2A.x的染色,将细胞固定在含有4%无甲醇甲醛(Thermo Fisher Scientific,28906)的PBS中 ,固定10分钟 。将固定在PBS中用100 mm甘氨酸(Sigma-Aldrich)淬灭10分钟,并用含有0.5%Triton X-100的PBS透化15分钟,再次用PBS洗涤 ,并使用10%正常山羊血清(ABCAM),0.1%Tween-20-tween-20(Sigma-20)(sigma-aldrich)ins in for 10% 。在与一抗和继发抗体中孵育后,将样品用含有0.1%Tween-20(Sigma-Aldrich)的PBS洗涤3次 ,持续10分钟。用单克隆兔抗体(细胞信号传导,12231s,7 ,1:800)检测细胞周期蛋白B1 ,并使用驴抗兔Alexa Fluor 488二抗(Molecular Probes,A21206,1:1,000)(扩展数据图1D)进行可视化。用单克隆小鼠抗体(Enzo Life Sciences ,Adi-Kam-CC006-E,10161910,1:1,000)检测CENP-A ,并使用山羊抗小鼠氟488二级抗体(Molecular Probes,A11001,1:1:1:1:1:1:1:1:1:1:1,000)(扩展数据)(扩展数据图图) 。用重组兔抗体(ABCAM ,AB220784,GR3284309-1,1:2,000)检测到中心蛋白 ,并使用山羊抗兔Alexa Fluor 633二级抗体(分子探针,A21071 、1:1:1,000)(扩展数据图。1F)。使用多克隆兔抗体(Millipore,07-373 ,3092508 ,1:500)检测到乙酰化的组蛋白2b,并使用驴抗兔氟488二级抗体(分子探针,A21206 ,1:1,000)(扩展数据)(扩展数据图3A-da) 。使用多克隆兔抗体(Merck,06-599,3260200 ,1:500)检测到乙酰化组蛋白3,并使用驴抗兔氟488二级抗体(分子探针,A21206 ,1:1,000)(扩展数据)(扩展数据)。使用重组兔抗体(ABCAM,AB109463,GR284778-8 ,1:400)检测到乙酰化组蛋白4K16,并使用驴抗兔Alexa Fluor 488二级抗体(分子探针,A21206 ,A21206 ,A21206,,A21206 ,,A21206, ,A28478-8,1:400)检测到可视化 1:1,000)(扩展数据图3a – d)。用单克隆小鼠抗体(Biolegend,613402 ,B283251,1:1,000)检测到γH2A.X,并使用山羊抗小鼠Alexa Fluor 488二级抗体(分子探针 ,A11001,1:1,000)(扩展数据图3G)进行可视化 。在Nunc Labtek II室内盖玻璃井中制备的免疫荧光样品存储在含有1.62 µm Hoechst 33342(Invitrogen)的PBS中。在18毫米圆形的Menzel盖玻璃上制备的免疫荧光样品嵌入了有或没有DAPI的Vectashield中(VectorLabs,H-1000或H-1200)。   µClear显微镜板(384-WELL; GRINER BIO-ONE ,781906)用5%Hellmanex III(Lactan ,105513203)在≥18MΩMonoQH2O中以65°C的65°C洗涤在桌面INCU-INCU-INCLINE烤箱(VWR)中,供4 H和Monod串上,然后用Monine和RINSED 10 h2 h2 h2 。用1 M KOH(Sigma-Aldrich)蚀刻二氧化硅在室温下再次用≥18MΩMONOQH2O冲洗10次。在室温下 ,用5k-MPEG-Silane(Creative Pegworks,PLS-2011)用5k-MPEG-Silane(Creative Pegworks,PLS-2011)处理蚀刻的多绿色板块在室温下悬挂18小时。用95%乙醇洗涤板一次 ,然后用≥18MΩ的Monoq H2O洗涤10次,并在干净的化学罩中干燥过夜 。在使用单个井之前,将板用粘合剂PCR板箔(Thermo Fisher Scientific)密封 ,并保持在干燥和黑暗的空间中 。在实验之前,加入了单个井上的箔,并加入了50 µl 100 mg ml-1 BSA(Sigma-Aldrich ,A7030)。   对于微管/核小体阵列液滴实验(图3E),薄层盖玻璃三明治是由钝化的24×60 mm门泽尔盖玻璃(VWR)构建的。为了清洁盖玻片,它们垂直堆叠在一个Coplin Jar(Canfortlab ,LG084)中 。然后将Coplin罐子在丙酮(Sigma-Aldrich)中超声处理15分钟 ,在100%乙醇(VWR)中持续15分钟,然后用≥18MΩMonoQH2O洗涤10次。使用超声清洁浴(Branson,2800系列超声清洁剂 ,M2800)进行所有超声波步骤。在单独的erlenmeyer烧瓶中,将30%30%的30%过氧化水溶液(Sigma-Aldrich,31642)添加到58.5 ml浓硫酸(Sigma-Aldrich ,258105)(Piranha Acid)中 。将烧瓶轻轻旋转直到发生气泡并加热,然后将烧瓶的整个内容物添加到Coplin罐子中的盖玻片上,以确保覆盖所有盖玻片表面。将罐子转移到95°C的水浴中 ,并加热1小时。之后,将Piranha溶液丢弃,并用≥18MΩMonoQH2O洗涤盖玻片 ,并用0.1 M KOH蚀刻5分钟 。将盖玻璃转移到新鲜干燥的Coplin罐中,并在65°C的台式烤箱中干燥至完整,然后向左冷却至室温。在一个单独的erlenmeyer烧瓶中 ,将4 ml二氯二甲基硅烷(DCDMS)(Sigma-Aldrich ,440272,无水)注入80 mL七浓度(Sigma-Aldrich,246654 ,无精神经菌)。将烧瓶的内容物立即转移到包含盖玻璃的罐子中,并在室温下孵育1小时 。接下来,将硅烷倒倒 ,并在氯仿(Sigma-Aldrich)中超声处理5分钟,用氯仿洗涤一次,再次在氯仿中进行超声处理5分钟 ,并在≥18MΩ的Monoq H2O中进行两次超声处理。最后,将盖玻璃再次用氯仿洗涤,空气干燥并储存在一个干燥 ,深色,无尘的空间(最多6个月)中的密封容器中。   To passivate cover glasses, on the day of an experiment, a cover glass was transferred to a drop of 5% Pluronic F-127 (Thermo Fisher Scientific, P6866) dissolved in BRB80 buffer (80 mM K-PIPES, pH 6.9 (Sigma-Aldrich, P6757), 1 mM MgCl2 (Sigma-Aldrich), 1 mM EGTA (Merck,324626))在室温下> 2 h 。直接在成像室组装之前,将盖玻璃用≥18MΩMONOQH2O冲洗一次 ,一次用BRB80(80 mM K-Pipes ,pH 6.9(Sigma-Aldrich,p6757),1 mM MGCL2(Sigma-Aldrich)(Sigma-Aldrich)(Sigma-Aldrich)(Sigma-Aldrich)(Sigma-Aldrich)(Sigma-Aldrich)(Sigma-Aldrich)(Sigma-Aldrich)(Sigma-Aldrich)(Sigma-Aldrich)(Sigma-Aldrich)和1 mm Egta(1 mm Egta)(Merck ,32266666626)) 。   MEGFP(-7E)和SCGFP(+7E)表达和纯化的宠物构造是D. Liu43的礼物。Rosetta 2(Plyss)大肠杆菌(Novagen)的隔夜培养物,用PET_ -7GFP或PET_ +7GFP质粒与理论肽含量为-7e或 +7e的理论肽电荷编码GFP,分别在琼脂板上在LB补充剂上进行100 nG的AM种植 ,并分别在琼脂板上生长。37°C 。将细菌草坪悬浮在补充100 ng µl -1的氨苄青霉素的LB中,并在37°C下生长至600 nm的0.4的光密度,在0.4的0.4处冷却1小时至18°C ,并通过在18°C下添加IPTG至0.5 mm,在18°C中诱导重组蛋白表达。The cells were collected by centrifugation, resuspended in NiNTA lysis buffer (50 mM HEPES·NaOH, pH 7, 150 mM NaCl, 10% (w/v) glycerol, 15 mM imidazole, 5 mM β-mercaptoethanol, 1 mM benzamidine, 100 µM leupeptin, 100 µM antipain, 1 µM pepstatin), the细胞悬浮液在液体N2中闪烁,并存储在-80°C下。   在Nininta裂解缓冲液中具有表达GFP蛋白的细菌培养物在水浴中解冻 ,并在约10,000 psi的多个通道中通过多个通道裂解 。相等体积的NINTA稀释缓冲液(50 mM HEPES·NaOH,pH 7,1.85 m NaCl ,10%(w/v)甘油 ,15 mM咪唑,5 mMβ-磁乙醇,1 mm苯甲酰胺 ,1 mm苯甲酰胺,100 µm liupeptin,100 µm lipain fimplipin firmition in Antipation in Antipation in Anactation dy anaCtation nak usant us pepst us lys us pepsstatiin µM1 M.通过在20,000 rpm的JA25.5转子中的Beckman Avanti J-26离心机中的细胞碎片离心通过离心细菌裂解物。Soluble lysate was incubated with NiNTA resin (Qiagen) equilibrated in NiNTA wash buffer A (50 mM HEPES·NaOH, pH 7, 1 M NaCl, 10% (w/v) glycerol, 15 mM imidazole, 5 mM β-mercaptoethanol, 1 mM benzamidine, 100 µM leupeptin, 100 µM antipain, 1 µMpepstatin)在批处理中持续2小时 ,并终端混合。将ninta树脂倒入生物拉德的经济杂色中,并用20列的Ninta洗涤缓冲液和20列的柱量的ninta洗涤缓冲液B(50 mm Hepes·NaOH,pH 7 ,150 mm nacl,10%(w/v)甘油,15毫米Immmmmmmmmmmmmmmmmmmmmmmmβ ,ph 7,150 mm naH,pH 7 ,150 mm naH ,pH 7,150 mm naH,150 mm naH ,150 mm在Ninta洗脱缓冲液中洗脱之前(50 mm Hepes·NaOH,pH 7,150 mm NaCl ,10%(w/v)甘油,350 mmmmmmmmmmmmmmmmmmmmmmcaptoetoethananol,1 mmmmmmmmmmmimmimmim ,抗蛋白酶,1 µm pepstatin) 。   GFP proteins were diluted with 9 volumes of buffer SA (20 mM HEPES·NaOH, pH 7, 10% (w/v) glycerol, 1 mM DTT) and applied to Source 15S (meGFP) or Source15Q (scGFP) resin (GE Healthcare) equilibrated in 98.5% buffer SA and 1.5% buffer SB (20 mM HEPES·NaOH,pH 7,1 m naCl ,10%(w/v)甘油,1 mm DTT),并用线性梯度洗脱至100%缓冲液SB。将含有GFP蛋白的馏分浓缩在离心浓缩剂中 ,具有3,000个DA MWCO ,并使用SuperDex 200 10/300 GL凝胶过滤柱进一步纯化,并用凝胶过滤缓冲液平衡(20 mm Tris·Hcl,pH 8 ,150 mm nacl,1 g/v)。如上所述,将纯化的MEGFP(-7E)和SCGFP(+7E)蛋白的峰值集中在离心浓度中 ,并通过在280 nm处测量蛋白质吸收率,使用其计算的摩尔灭绝系数(https://web.expasy.org/protparotparam/)和230,30,30,30,30,380,30,3.80,30,380,30,3.80.SCGFP的18,910 m -1 cm -1 。纯化的蛋白质在液体N2中闪烁,并在单使用等分试样中储存在-80°C。   先前已经描述了核小体阵列的生成 ,荧光团标记,组装和质量控制13。这里使用了12x601不带有标签或Alexa Fluor 488或Alexa Fluor 594标签的核小组阵列 。The covalently fluorescently labelled nucleosome arrays used for microinjection were labelled at an 8% fluorophore density (8 in 100 histone2B proteins labelled with a fluorophore) and dialysed against TE (10 mM Tris-HCl (Sigma-Aldrich), pH 7.4 (Sigma-Aldrich), 1 mM EDTA (Sigma-Aldrich), pH 8.0,1毫米DTT(Roche,10708984001)去除甘油 。   为了诱导核小体阵列的相分离(图4E和5E ,g),首先在染色质稀释缓冲液(25 mm Tris·Oac,pH 7.5(Sigma-Aldrich) ,5 mm dtt(Roche ,10708984001),0.1MMMMMMEDTA(SIGMA)(SIGMA-ALDRICH)(SIGMA-ALDRICH),5 mm DTT(SIGMA-ALDRICH)中 ,首先在染色质稀释缓冲液中平衡。BSA(Sigma-Aldrich,A7030),5%(w/v)甘油(Applichem ,A0970))在2.03 µm HOECHST 33342(Invitrogen,H1399)的存在下使用无标记的阵列在房间温度10分钟时。通过添加1体积的相分离缓冲液(25 mM Tris·OAC,pH 7.5(Sigma-Aldrich) ,5 mM DTT(Roche,10708984001),0.1 mm EDTA(Sigma-Aldrich) ,0.1 mg mg ml-1 bsa/gsigma-aldricerol,5%(sigma-aldrich),5毫米 ,vyta(sigma-aldrich) ,5毫米,ver lydrich,5毫米 ,(Applichem,A0970),300 mM乙酸钾(Sigma-Aldrich) ,1 mM mg [OAC] 2,2 µg Ml-1葡萄糖氧化酶(Sigma-Aldrich,G2133) ,350 ng ml-1 catalase(Sigma-1 Catalase(Sigma-Aldrich)(Sigma-Aldrich,c1345)和4MMMMMMMMMMM MMMMMMRES(AMMRES) 。对于含微管蛋白的体外测定,将EGTA取代在稀释和相分离缓冲液中代替EDTA。添加相分离缓冲液后 ,每个反应的核小体阵列的最终浓度为500 nm,在将悬浮液转移到成像室之前,将反应在室温下孵育10分钟。   为了可视化相对于体外染色质液滴的可溶性微管蛋白分配 ,将20 µL的染色质液滴悬浮液转移到384孔显微镜板的钝化孔中 。允许染色质滴到沉积物15分钟。接下来 ,在最终的小管蛋白浓度为5 µm的最终小管蛋白浓度中添加了5 µL可溶性TRITC标记的微管蛋白(细胞骨架,TL590M),其中含有500 ng ml-1诺科唑。在记录图像之前 ,将可溶性小管蛋白平衡10分钟 。   为了可视化GFP表面电荷变体相对于体外染色质液滴的分配,将20 µL的染色质液滴悬浮液转移到384孔显微镜板的钝化孔中。将染色质液滴允许到沉积物15分钟,然后将5 µL的GFP溶液在相分离缓冲液中加入最终浓度为5 µm。在记录图像之前 ,将GFP蛋白平衡10分钟 。   为了可视化化学修饰的葡聚糖分配到体外染色质液滴中,将20 µL的染色质液滴悬浮液转移到384孔显微镜板的钝化孔中。将染色质液滴允许到沉积物15分钟,然后将5 µL右侧溶液加入相分离缓冲液中的500 µg ML-1。The dextran used was a fluorescein (FITC)-labelled 4.4 kDa dextran fraction (negative overall charge conferred to dextran by fluorophore charge) (Sigma-Aldrich, FD4) or a FITC-labelled 4.4 kDa dextran fraction modified with diethylaminoethyl (DEAE) groups conferring an overall positive charge (TdB, DD4).   在体外相对于染色质液滴相对于染色质液滴的所有图像(图3E和扩展数据图9M ,O)均在定制的Zeiss LSM980显微镜的孵育阶段记录,使用A×40 1.4 NA NA NA OIL IMMER-IMMERMERSION DIC PLAN-PLAN-PLAN-PLAN-PRAN-PLAN-PARMAMAMT AMPRAMT(Zeiss) 。   为了产生用于显微注射的乙酰化核小体阵列,根据先前描述的纯化策略 ,使用质粒PETDUET+P300HAT生成了重组P300组蛋白乙酰转移酶结构域(VBCF蛋白技术设施) 。To induce histone acetylation of nucleosome arrays, arrays with 8% Alexa Fluor 488 or Alexa Fluor 594 label density at a concentration of 3.85 µM were incubated with 6.12 µM p300-HAT (enzyme stock 61.2 µM in gel-filtration buffer (20 mM Tris·HCl, pH 8.0, 150 mM NaCl, 10%(w/v)甘油,1 mm dtt))在750 µm乙酰辅酶A(Sigma-Aldrich,A2056)存在于室温下2小时的凝胶过滤缓冲液中 ,偶尔会激动。接下来 ,将A-485(Tocris,6387)添加到最终浓度9 µm的情况下,将乙酰化停止 ,并将反应混合物储存在黑暗中。至10 µL淬灭乙酰化反应,加入了10 µL含5 µM A-485(Tocris,6387)的10 µL稀释缓冲液 ,并允许在室温下平衡反应10分钟 。接下来,加入1卷的相分离缓冲液,其中含有5 µM A-485(Tocris ,6387),并将混合物在室温下在室温下孵育10分钟,然后将悬浮液转移到耗电384孔显微镜板的孔中。   为了产生稳定的微管种子 ,用于体外微管网络的成核,将22 µL 5 mg ml-1微管蛋白(细胞骨架,T240)与2 µl的5 mg ML-1 Tritc-1 Tritc-1 Tritc-Labelled tubuled tubuled tubulin蛋白(Cytoskeleton ,t240)混合生物素-XX标记的小管蛋白(Pursolutions ,033305)。所有微管蛋白储存溶液均在BRB80(80 mM K-Pipes,pH 6.9(Sigma-Aldrich,p6757) ,1 mM MGCL2(Sigma-Aldrich),1 mm EGTA(默克,324626))中制备 。将微管蛋白混合物在4°C下在桌面离心机(Eppendorf ,5424R)的21,000g下离心15分钟。至22.5 µl所得的上清液,2.5 µl 10 mM Guanylyl-(Alpha,beta) - 甲基二氨膦酸盐(Jena Biosciences ,NU-405)的最终浓度为1 mm,并在37°C中在37°C中孵育在37°C中,可在37°C中孵育30分钟。使用22号针头汉密尔顿注射器(Sigma-Aldrich ,20788)剪切所得的种子 。由此产生的悬架存储在黑暗中。每天新鲜准备种子,并用于随后的实验。   含有50 µM微管蛋白蛋白(细胞骨架,T240) ,1 µM TRITC含量的微管蛋白(细胞骨架 ,TL590M)和1 mm GTP(Sigma-Aldrich,g8877)(Sigma-Aldrich,g8877)(SigmmmMMMMMMMMMMMMMMMMMMMMMM ,SMMMMMMMMMM,P6757),1 mM MGCL2(Sigma-Aldrich) ,1 mm EGTA(Merck,324626)在4°C下以21,000g的桌面离心机(Eppendorf,5424R)在4°C下离心15分钟 。所得的上清液用于组装含有20 µm总溶纤维纤维蛋白(19.61 µm未定位小管蛋白二聚体 ,0.39 µM标记的小管蛋白),50 mm DTT(Roche,Roche ,10708984001),1200 µm glucco(amm glucco)的微管聚合物混合物(19.61 µm未定位的小管蛋白二聚体),50 mm dtt(Sigma-Aldrich ,G8877) ,20 µg Ml-1葡萄糖氧化酶(Sigma-Aldrich,G2133),175 ng Ml-1(Sigma-Aldrich ,C1345,C1345,C1345)在Brb80中(Sigma-Aldrich) ,1 mm EGTA(默克,324626))。可溶性小管蛋白和小管蛋白聚合混合物的组成是根据可视化微管加末端跟踪(+TIP)蛋白61的方法进行的。   为了可视化染色质液滴以及聚合微管,如前所述构建成像室62 。在Pluronic F-127钝化之前 ,使用钻石式的钢卷饼(Miller,DS-60-C)将每个硅烷化的24×60 mm盖玻片切成24×25 mm(顶部)和24×35 mm(底部) 。将底盖安装在支撑滑块中,并用预热的瓣膜(1份凡士林(Sigma-Aldrich ,16415),1部分羊毛蛋白(Sigma-Aldrich,L7387) ,1份石质蜡(Sigma-Aldrich ,327204);所有部分按重量)。在底盖玻璃的中央区域,附着两孔硅培养物插入(Ibidi,80209) ,并将40 µL的核小体阵列液滴悬浮液添加到其中一个井中。在室温下,将悬浮液在一个加湿的腔室中沉淀15分钟 。接下来,将32 µL的缓冲液从井中取出 ,从盖玻片上取出培养物插入,并将20 µL可溶性小管蛋白混合物添加到其余的染色质液滴悬浮液中。顶部的盖玻片在顶部添加,而钝化的侧面面向反应混合物 ,并使液滴完全扩散(约10 s)。接下来将样品用阀门密封,以防止液体膜中的蒸发和热流 。该过程产生了厚度约30 µm的液体膜。使用×63 1.4 Na Na Im-Immermersion DIC Plan-Plan-Plan-Plan-Plan-Plan-Plan-Plan-Plan-Apochromat物镜(Zeiss),将组装的成像电池转移到定制的Zeiss LSM980显微镜的孵育阶段。在记录图像之前 ,将样品在37°C下孵育> 30分钟 。   在碳涂层的蓝宝石盘(厚0.05 mm,直径3毫米; Wohlwend)上培养稳定表达H2B-MCHERRY的HELA细胞。为了富集前循环酶细胞,使用双胸苷(Sigma-Aldrich)块将细胞同步为G2-M 16小时 ,每个胸苷 ,每个胸苷2 mM,随后的RO3306(Sigma-Aldrich)块(Sigma-Aldrich)块,持续6小时 ,使用8 µm RO3306。在RO-3306块期间,在RO3306洗涤之前,将细胞用5 µM TSA处理3小时 。通过用预热成像介质冲洗三次细胞来冲洗RO3306。使用×20 0.5 na ec Plnn DICII空气物镜(Zeiss) ,在定制的Zeiss LSM780显微镜上观察细胞。然后,在RO3306冲洗后25分钟后,大多数细胞都达到了前循环酶(基于DIC和染色质形态) ,然后对细胞进行处理以进行电子显微镜分析 。在冷冻之前,将细胞浸入冷冻保护剂溶液中(成像含有20%Ficoll PM400; Sigma-Aldrich),并使用高压冷冻机(HPF Compact 01 ,WOHLWEND)立即冷冻 。   将冷冻细胞冻结成Lowicryl HM20树脂(PolySciences,15924-1),使用Freeze-Substitution设备(Leica EM AFS2 ,Leica Microsystems)如下:与0.1%乙酸铀酰乙酸氨基酯(UA)(UA)(UA)(UA)(UA)(UA)(UA)(serva Electophoresis ,for 778870 in-acte)in-900 in Acets in Acets in Acets in Acets in cy cy:cy。温度以5°C H -1的速率增加到-45°C,并在-45°C下孵育5小时。将细胞在-45°C下在丙酮中洗涤3次,然后在丙酮中以增加浓度的树脂Lowicryl ,HM20在丙酮中孵育(每个10、25、50和75%,分别为2 h),而温度在2.5°C H -1的速率下进一步升高至-25°C 。然后将细胞在100%树脂lowicryl ,-25°C下的HM20中孵育16小时,在12小时,14小时和16小时后改变纯树脂溶液。将树脂在-25°C的紫外线下聚合48小时。温度升高到20°C(5°C H -1) ,紫外聚合持续48小时 。   树脂聚合后,用超明核病组(UCT UCT; Leica)切割250 nm厚度的切片,并在涂有1%Formvar(Plano)的铜 - 宝座插槽网格(科学服务)上收集。首先使用×40 1.4 Plan-Apochromat Oil Immermersion物镜(Zeiss)在Zeiss LSM710显微镜上观察到这些部分。H2B荧光用于选择细胞和细胞下ROI进行断层扫描 。然后将切片用2%UA在室温下的70%甲醇中染色7分钟 ,然后在室温下柠檬酸盐固定5分钟。Tecnai F20透射EM(200 kV; FEI)观察到了这些切片。对于断层扫描,使用串行EM Software63在最终的XY像素大小为1.14 nm的情况下,在-60°至 +60°倾斜范围内获得了一系列倾斜图像 ,角度增量为1° 。使用IMOD软件包44中实现的R加权背部投影方法重建断层图64。   根据制造商的指南 ,使用4-12%的MES运行缓冲液中的4–12%BIS-TRIS通过Novex Nupage SDS-PAGE系统(Thermo Fisher Scientific)分开样品,并通过室温下的含量湿度(Bio-Rad)(Bio-Rad)在室温下以1 H的含量转移到0.45 µm硝基纤维素膜(Bio-Rad)。在PBS中,在5%(w/v)牛奶(Maresi ,Fixmilch Instant Milk粉)中进行阻塞,初级抗体(4°C,16小时)和二抗孵育(室温 ,1.5 h),其中包含0.05%的Tween-20(Sigma-Aldrich) 。使用兔多克隆抗体(ABCAM,AB229213 ,GR3228108-5,1:1,000)探测SMC4 。用兔多克隆抗体探测GAPDH(ABCAM,AB9485 ,GR3212164-2,1:2,500)。用单克隆兔抗体探测HKID(ABCAM,AB75783 ,GR129278-4 ,1:1,000)。用重组兔抗体探测KIF4A(ABCAM,AB124903,GR96215-7 ,1:1000) 。Horseradish peroxidase (HRP)-conjugated anti-mouse or anti-rabbit secondary antibodies (Bio-Rad, 1:10,000) were visualized using ECL Plus Western Blotting Substrate (Thermo Fisher Scientific) on a Bio-Rad ChemiDoc Imager operated by analysed using Bio-Red Image Lab v.6.0.1, which was also used for analysis.   G2至有序诱导,DSRED转染,野生型和SMC4-MAID-HALOTAG细胞的Halotag染色 ,组蛋白乙酰化,p300过表达和荧光恢复(FROPLEARCHING(FRAP)实验(FRAP)实验在使用定制的Zeiss Zeiss LSM780 Miproscope上记录Plan-Apochromat目标(Zeiss),由Zen Black 2011软件运营。染色质密度 ,活微管染色,ALUI消化的延时视频,核小组阵列微型注射 ,微型微型注射,微管蛋白显微注射,CENP-A/Pericentrin Immunofluorecence使用定制的Zeiss LS980 MIRSSM980 MIRSCOPE记录了蛋白酶B1的图像。×63 1.4 NA石油浸入DIC PLAN-APOCHROMAT目标(Zeiss) ,由Zen3.3 Blue 2020软件运营 。对于所有共聚焦显微镜 ,一个孵化室(EMBL)提供了潮湿的气氛和恒定的37°C温度,温度为5%CO2。   确定凋亡指数的细胞场的图像记录在倒置的轴观测器Z1上,其SCMOS摄像机配备了×20/0.5 Plan-Neofluar空气物镜 ,由Zen Blue控制。为了检测HOECHST 33342荧光,使用了EX 377/350 nm,EM 447/60 nm滤波器;为了检测PSIVA荧光 ,使用了EX 470/40 nm,EM 525/50 nm滤波器;为了检测PI荧光,使用了EX 530/75 nm ,EM 560/40 nm 。   对于FRAP实验,使用的激光强度比用于图像采集的激光强度高200倍200倍,并且每个漂白的像素被用20次照亮 ,并使用用于获取的像素停留时间(1.79 µs)的激光强度(1.79 µs)。在实验过程中,每25毫秒获取图像。   Images of nucleosome array droplets and in vitro polymerized microtubules were recorded on a customized Zeiss LSM980 microscope combined with the Airyscan2 detector, using the ×40 or ×63 1.4 NA oil-immersion DIC plan-apochromat objectives (Zeiss), operated by ZEN3.3 Blue 2020 software.为了安装384孔显微镜板,使用了Pecon通用框架KM适配器 。为了安装微管成像幻灯片 ,使用了一个定制的铝制安装块 ,用于24 mm×24–60 mm的盖玻片(IMP/IMBA研讨会和生物启动)。   使用femtojet 4i微型注射器与注射器4微型消除装置(Eppendorf)一起进行活细胞显微注射实验。所有显微注射均使用预先拔出的替代毛细血管毛细管(Eppendorf)进行 。The microinjection device was directly mounted onto a customized confocal Zeiss LSM780 (Fig. 2c and Extended Data Fig. 8a–h) or a customized Zeiss LSM980 microscope (Fig. 2a,e and Extended Data Figs. 3a, 4a,  7a,c,e,g, 8k,l,o, 9a,c,l,k and 10a,c) with live-cell incubation(37°C,5%CO2) 。对于所有显微注射,将细胞在注射当天的聚合物或玻璃底部(IBIDI)中培养在带有聚合物或玻璃底部(IBIDI)的35毫米高壁成像菜肴中 ,以达到接近体积。   为了注入Alui(快速消化,Thermo Fisher Scientific,fd0014) ,将1.5 µL Alui库存添加到3 µl的5 mg Ml-1 FITC标记的500 kDa dextran级分(Sigma-Aldrich,fd500s,fd500s ,fd500s)中溶于注射buffer(50 mm k-khepes,phrich),ph 3.44.44 sig ,5%甘油(Applichem,A0970),1 mm mg(OAC)2(Sigma-Aldrich ,M5661))。使用Eppendorf微毛细管微型加载器(Eppendorf ,5242956003),将3 µL稀释的酶加载到fomtotip微分注射毛细管中 。使用130-150 HPA注入压力,0.15至0.25 s注射时间和30 HPA补偿压力 ,对有丝分裂细胞的显微注射(图2A,C,E ,G和4A以及扩展数据图图7A,C,E ,G,8G和10A,C)进行了。使用120 HPA注入压力 ,0.4至0.5 s的注射时间和20 HPA补偿压力的注射设置对G2相间细胞的显微注射(扩展数据图8A – H)进行。   为了注射核小体阵列(图8K),将1.5 µL注入缓冲液(50 mM K-Hepes,pH 7.4 ,25%甘油缓冲液)添加到1.5 µL未修饰和1.5 µL乙酰化的核心组阵列溶液(1.3 µM最终浓度浓度(1.3 µM)入核溶液中) 。使用180-190 HPA注射压力 ,0.35 s的注射时间和85 HPA补偿压力的注射设置对有丝分裂细胞进行显微注射。   为了注射微管蛋白蛋白(图3A),将TRITC标记的微管蛋白(细胞骨架,TL590M)溶解在5%GPEM中(80 mM K-Pipes ,pH 6.9,pH 6.9(Sigma-Aldrich,p6757 ,p6757),1 mmmgcl2(1 mmmgcl2(sigma-mmmmmmma-egmma-egrich,63065)324626))补充了1 mM GTP(Sigma-Aldrich ,G8877),浓度为0.5 mg ml-1。通过在21,000g的桌面离心机中以4°C离心15分钟来阐明蛋白质 。使用175 hPa注入压力,0.25 s和85 hPa补偿压力的注射设置将上清液显微注射到有丝分裂细胞中。对于用诺科唑的Prometathase中捕获的细胞的显微注射 ,还补充了G-PEM 100 ng ml-1诺科唑(Sigma-Aldrich,M1404)。   为了显微注射GFP表面电荷变体(扩展数据图9a),将重组MEGFP(-7E)或SCGFP(+7E)溶解在注射缓冲液中(50 mm K-Hepes ,pH 7.4 ,pH 7.4(Sigma-Aldrich,H3375,H3375 ,H3375),25%甘油浓度(25%applicerol(applicerol)浓度15%浓度(15%) 。使用125 hPa注射压力,0.2 s的注射时间和40 HPA补偿压力的注射设置对有丝分裂细胞进行显微注射。   用于对电荷修饰的右旋脱粒分数的显微注射(扩展数据) ,是FITC标记的4.4 kDa葡萄糖馏分(通过荧光团电荷赋予Dextran的负负电荷(Sigma-Aldrich,fd4)或fitc-Labell的4.4 kda dextran fratied(sigma-aldrich,fd4) ,由dextran fractied(dextran fractied contried contried contried contried contried contried contried contried contried contracied contried contried contried contried contried contried contracied(将DD4)溶解在注射缓冲液(50 mM K-Hepes,pH 7.4(Sigma-Aldrich,H3375) ,25%甘油(Applichem,A0970))中,为5 mg ml-1的浓度。使用125 hPa注射压力 ,0.1-15 s的注射时间和20 HPA补偿压力的注射设置对有丝分裂细胞进行显微注射 。   为了将DNA会议量化为活细胞中的主轴赤道 ,测量了平行于极点轴的线谱的DNA分布(对于图1A,B,7.06 µm宽度 ,宽度为7.06 µm,长度为22.5 µm;对于扩展数据,图5C ,D,D,12.04 µm宽度 ,22.5 µm宽,22.5 µm长) 。沿着每个线轮廓,在杆子之间的中心位置(由最高的siR-微管蛋白峰强度确定)的中心位置的中央5 µM间隔中测量了累积的DNA密度 ,并在细胞外背景荧光减法后沿整个曲线除以总DNA密度。每个线轮廓代表围绕极轴轴周围z键的平均强度投影(对于图1A,B,2.4 µm范围;对于扩展数据图5C ,D ,D,0.75 µM范围)。   为了量化有丝分裂细胞的中心Z段(通过视觉检查根据杆子处的最高siR-微管蛋白染色强度确定(图1a,c和扩展数据图4A – d和5c ,e),使用高斯滤波器过滤器(使用高斯模糊= 2)使用fij dna dna dna通道,并使用fij threshost frus frus frus theresn od fij 。转换为选择 ,并测量该ROI内的DNA平均荧光。   在用于ALUI显微注射实验的STLC处理的细胞中(图2A,B,E ,F和扩展数据图7E-H和8G,H),在线曲线中测量了DNA密度。在单个Z型滑板中 ,通过平行于成像平面的染色体(在ALUI注射之前),染色质蛋白液滴(ALUI注射后20分钟)或TSA处理后的TSA处理细胞中(Alui注射后20分钟)(测量了染色质染色质) 。测量了在峰值周围200 nm间隔内的平均组蛋白2B荧光强度。将值归一化为未注射对照的平均值(图2B,F和扩展数据图7F和8H)或未注射的冷凝蛋白降解对照(扩展数据图7H)。   在经受G2-症状诱导的细胞(扩展数据图8a – H)中 ,使用高斯模糊滤光片(σ= 2)将YFP通道脱氧 ,并使用斐济的OTSU暗方法进行阈值 。将所得面膜转换为ROI,并且在此ROI中记录的组蛋白2B -YFP平均荧光。将值标准化为G2测量的平均值。   为了在有丝分裂进入后从纺锤极中量化DNA位移以诱导单极纺锤体几何形状,沿着具有sir-微管蛋白荧光质量中心作为播种点的径向线谱沿径向线谱测量DNA/染色质分布 。从有丝分裂输入的视频中 ,使用预言后20分钟的时间点用于测量(扩展数据图2A – C)。测量是在SIR-微管蛋白荧光质量周围的2个共聚焦切片的最大强度Z预测中进行的,表明单极纺锤体的中心(Z偏移2.5 µm)。使用ImageJ插件径向轮廓角度绘制径向线轮廓(P. Carl和K. Miura的V.1-14-2014,基于P. baggethun的径向轮廓) ,具有积分角度θ= 180° 。沿着单极围绕的集成组蛋白2B荧光,将极距离的内部30%距离内的荧光信号与染色质距离的外边缘(累积组蛋白2B荧光的99%)除以外70% 。所得值表示在杆状区域中可检测到的染色质的相对量。   在Z项目中,飞机或共焦切片(7个针对扩展数据的Z偏移为0.15 µm的飞机Z Z段图1F ,2个共核z段,使用gaussian Blur filter(ijijiij filter(ijijiij filter(filur filter))和ijij = 2),并在2 a – c上进行了2.5 µm z偏移图)和e = 2b and。转换为面具 。使用高斯模糊滤波器(σ= 1)在使用斐济中的查找最大函数(严格 ,排除边缘最大值,突出= 100(扩展数据图1G),突出= 2,000(扩展数据图2E))。在检测到的动力学的总数中 ,手动量化了染色质外部的动力学(> 0.5 µm距离最近的染色质膜表面)。   电子断层图分析在IMOD/3DMOD ,v.4.11中进行 。使用运行Z平均强度投影以增加对比度(微管注释:10–20 Z-Slices的投影,染色质注释:35-50 Z链),使用Z平均强度投影进行了所有结构的注释。为了说明图像清晰度朝向记录的断层图的顶部和底部的损失 ,对于所有断层图,仅分析了记录体积的中心部分(带有120至150个切片的断层图,顶部和底部20片没有注释)。对于微管注释 ,使用了0.8至1.0的变焦系数 。对于染色质注释,使用了0.35–0.45的变焦系数。Assignment of microtubules was based on ultrastructural morphology, and assignment of chromatin boundaries was performed on the basis of local grain size, considering the transition of a large-grained, coarsely interspersed particle-containing area (cytoplasm with ribosomes; typical coefficient of variation (CV) > 0.4) to a fine-grained, finely interspersed particle containing area (chromatin with nucleosomes;典型的简历< 0.3 for control, CV < 0.4 for TSA) as the chromosome surface. The electron density as a determining factor of a chromatin surface was only used as a secondary direction as TSA treatment perturbs the chromatin density/morphology and therefore decreases the annotation accuracy. On average, an annotation landmark was set every 5–10 nm for both microtubules and the chromatin surface. After manual annotation of microtubules and a chromatin surface, a model of a meshed chromatin surface was generated by averaging five consecutive annotated slices to increase surface smoothness. Microtubule segment length was measured within the cytoplasm and chromatin-internal regions and normalized to the total volume of the respective domain.   Fields of asynchronous cells stably expressing histone 2B–mRFP were imaged for up to 4 h. The timing of nuclear envelope breakdown and anaphase onset was determined by visual inspection of chromatin morphology.   To measure FRAP, raw data measurement, background subtraction, data correction and normalization were performed according to ref. 65. The measurement of FRAP ROI and background fluorescence signal was performed directly in ZEN software. Total chromatin fluorescence per time-lapse movie was measured using the Time Series Analyzer v.3 (J. Balaji).   To determine the mitotic state of control and AluI-injected cells at the G2 to M transition (Extended data Fig. 8a–h), CFP, FRET and YFP signals of the histone 2B fused Aurora B-FRET biosensor66 were recorded at the same time. To quantify FRET efficiency, a custom Fiji script was used. In average-intensity projections of 9 z-slices (1 µm each), a nuclear mask was generated using the YFP fluorescence, after denoising using a Gaussian blur filter (σ = 5), by thresholding using the Otsu dark method. For each time point, the background for the FRET and CFP channel was measured in an extracellular ROI (square of around 1 µm × 1 µm). After background subtraction, FRET and CFP signals within the nuclear ROI were denoised using a Gaussian blur filter (σ = 5) and a FRET/CFP ratio was calculated. The resulting ratiometric image was depicted using the Fire lookup table in Fiji, at an interval of 0 to 1.4 for FRET/CFP.   To determine the surface confinement of Ki-67 to the surface of mitotic chromatin under various conditions, the distribution of Ki-67 was measured along line profiles across the chromatin–cytoplasm boundary.   In mitotic cells arrested in taxol, chromosomes were identified, which were perpendicular to the imaging section in 3 consecutive slices (z-offset between Airyscan slices of 0.15 µm). The centre slice was used for analysis. A line profile of 10 px width was manually drawn through one chromatid in a single Airyscan section, orthogonal to the surface of the chromatid and near-orthogonal to the longer axis of the chromosome. The Ki-67 fluorescence was measured along the line and aligned to the first peak in fluorescence intensity (Fig. 2e,f). For measuring Ki-67 distribution across the chromatin–cytoplasm boundary in cells after AluI-digestion of mitotic chromatin, the line profile was drawn perpendicular to the chromatin droplet surface, otherwise following the same measurement parameters as described above. To quantify the surface confinement of Ki-67, the fluorescence value along the line profile for the highest value of the control (surface) was divided by the value in the centre of the chromatid for control (inside). The same positions along the line profiles were used to calculate the ratios for TSA-treated and AluI-digested cells. (Fig. 2f,g).   To measure the Ki-67 distribution on mitotic chromatin after degradation of SMC4 or degradation of SMC4 and TSA treatment, a line profile of 10 px width was manually drawn across the chromatin surface in a central (based on visual inspection) Airyscan z-section (z-offset, 0.15 µm). The Ki-67-fluorescence was measured along these profiles and aligned around the 50% maximum value of the histone 2B fluorescence, indicative of the edge of the chromatin mass (Extended Data Fig. 8e,f).   In images of microinjected nucleosome arrays into metaphase cells (Extended Data Fig. 8k), the DNA channel was denoised using a Gaussian blur filter (σ = 2) and thresholded using the Otsu dark method in Fiji. The chromatin mask was converted into a ROI by using the Analyze Particles function in Fiji. For the two injected nucleosome arrays of different colours, the mean fluorescence intensity was measured in the DNA ROI and divided by the fluorescence intensity in the cytoplasm measured in a circular ROI of ~5 µm diameter, with at least 1 µm distance to the chromosomes.   The TRITC–tubulin partition coefficient (Fig. 3a,b) was measured >10 min after microinjection in nocodazole-arrested cells. At the surface of a chromosome at the edge of the chromosome cluster, mean fluorescence intensity of TRITC was measured along a line profile (5 px width, 1.3 µm length) orthogonal to the chromosome surface. Values 1 µm apart within and outside of chromatin were divided, resulting in the measured equilibrium partition coefficient.   The distribution of differently expressed DsRed fusion proteins (Fig. 3c,d) was measured using a custom Fiji script. A chromatin mask was generated using thresholding (default method, Fiji), after Gaussian blur filtering (σ = 2) the chromatin channel. The mask was then shrunk by 0.2 µm and the mean fluorescence was measured within the mask. Cytoplasmic fluorescence was measured within a ring (width, 0.5 µm), generated by extending the mask by 1.5 µm. Background mean fluorescence was measured within a small circular region outside the cell and subtracted from chromatin and cytoplasmic values. Partitioning coefficients were obtained by dividing chromatin by cytoplasmic fluorescence values. Measurements were performed on the central z-slice.   The distribution of microinjected differently charged GFPs (Extended Data Fig. 9a,b) and differently modified FITC-labelled dextran fractions (Extended Data Fig. 9c,d) was measured analogously along line profiles orthogonal to the metaphase plate at the orthogonal surface of the chromatin mass (5 px width, 2.5 µm length). Values 1 µm apart within and outside of chromatin were divided, resulting in the measured equilibrium partition coefficient.   The distribution of soluble TRITC–tubulin dimers (Fig. 3e,f), differently charged GFPs (Extended Data Fig. 9m,n) and differently modified FITC-labelled dextran fractions (Extended Data Fig. 9o,p) within nucleosome array droplets in vitro was measured by determining the mean fluorescence intensity in the droplet in a central section of the droplet, in a small circular region covering ~25% of the droplet area in the respective section. In a large, rectangular buffer ROI without droplets, the mean fluorescence in the buffer was measured and the partition coefficient was calculated for each field of droplets.   Chromatin distribution in pole-peripheral regions was measured at 36 min after nocodazole washout. The spindle-pole position was determined as the z-slice with highest tubulin signal (SiR–tubulin (Fig. 4a) or eGFP–α-tubulin (Extended Data Fig. 10a,c)) and the total histone 2B (Fig. 4a and Extended Data Fig. 10a,c) and eGFP–CENPA fluorescence intensity in circular ROIs (r = 5 µm) in maximum intensity projections of 5 z-slices (1 µm offset between slices) around the central section was subtracted from the total cellular fluorescence in maximum intensity projections (the cell outline was determined by DIC channel). Each dataset was normalized to the mean of the total fluorescence intensities of all cells.   After deconvolution in ZEN, Airyscan images of fields of microtubules were denoised using a Gaussian blur filter (σ = 2). The background was then removed using the subtract background function in Fiji, using a rolling ball radius of 740 px. The image was converted into 8-bit, and thresholded using the Auto Local Threshold (v.1.10.1) plugin in Fiji, with the Phansalkar method and a radius of 100. The resulting binary image was skeletonized using the Skeletonize function in Fiji. The resulting skeleton length was measured. The chromatin channel was denoised using a Gaussian blur filter (σ = 2) and thresholded using the Otsu method in Fiji. The resulting binary image was transformed into a ROI using the Analyze particles function (size range, 5–infinity). Microtubule skeleton lengths were measured within chromatin ROIs and the surrounding buffer, and the ratio of total segment length in chromatin/buffer was calculated per image.   In images of fields of live cells stained with OregonGreen488 HaloTAG ligand, the total fluorescence intensity in average intensity projection was recorded in Fiji. To normalize the values to the cell count, the ratios of HaloTAG fluorescence over SiR–DNA intensity were calculated, and the values were normalized to the mean of the Hela WT cells.   After indirect immunofluorescence analysis of the respective histone-acetyl marks, a mask of the DNA channel was generated by thresholding using the Otsu method in Fiji. Next, the obtained binary image was converted to ROIs using the Analyze particles function (size range, 5–infinity). Mitotic and interphase cells were differentiated manually on the basis of chromatin morphology. Within the obtained ROI per cell, the mean fluorescence intensity of the acetyl mark was recorded, the extracellular background measured in a rectangular ROI was subtracted and a ratio of the histone mark over DNA mean intensity was generated to account for changes in DNA compaction between the different conditions. For comparison of untreated interphase and mitotic cells, obtained ratios were normalized to the mean of untreated interphase cells (Extended Data Fig. 3a,b). For comparison of untreated and TSA-treated mitotic cells, ratios were normalized to the mean of untreated mitotic cells (Extended Data Fig. 3c,d). For comparison of p300-expressing mitotic cells, ratios were normalized to the mean of the mock-plasmid transfected mitotic cells (Extended Data Fig. 5a,b).   In interphase mitotic cells, determined by the absence or presence of cell rounding, in the central section of the recorded z-stack (7 z-slices, 1 µm each, central section manually determined), the cell outline in DIC images was used to determine a ROI per cell. The total fluorescence intensity of the cyclin B1 fluorescence within this ROI was recorded in Fiji. The values were normalized to the mean of the cyclin B1 stain in interphase cells.   In fields of cells, the DNA channel was denoised using a Gaussian blur filter (σ = 2) and thresholded using the Otsu dark method in Fiji, and one ROI per cell was derived using the Analyze Particle function in Fiji. Within each ROI, the mean fluorescence signal of pSIVA and PI was quantified and any cell with a mean fluorescence signal of greater than 1.2× the median of all untreated control cells was considered to be positive for the respective marker and therefore dead/apoptotic. The fraction of all cells scoring positive for pSIVA and PI stain reflects the apoptotic index (Extended Data Fig. 3e,f).   A confocal stack of 21 slices with a z-offset of 0.5 µm was converted into a maximum intensity projection. The z-projection was denoised using a Gaussian blur filter (σ = 2), and γH2A.X foci were detected using the Find Maxima tool in Fiji (strict detection, 3,000 prominence) within a segmented chromatin mask obtained by thresholding the DNA channel using the Otsu dark method in Fiji (Extended Data Fig. 3g,h).   In entire fields of chromatin droplets or nucleosome array solution (Extended Data Fig. 8c) (both recorded ~3 µm above the cover glass using laser powers adjusted to the unmodified condition), the mean fluorescence intensity and s.d. was measured, and the CV (CV = α µ−1) was calculated.   Raw images recorded using the Airyscan2 detector using AS-SR or multiplex airyscan modes were processed using ZEN3.3 Blue 2020 software.   The Fiji-integrated distribution/version used for analyses in this study was ImageJ v.1.53c, using Java v.1.8.0_66 (64 bit), with in part custom ImageJ plugins as indicated.   No statistical methods were used to predetermine sample size. To test significance, the robust, nonparametric Mann–Whitney U-test was used. The statistical test used are indicated and the exact P values are been provided wherever possible. In some cases, the P values calculated were below the precision limit of the data type and algorithm used. In those cases, this has been noted in the legend and an upper bound was given. NS, P >0.05;*p≤0.05,**p≤0.01 ,***p≤0.001,****p≤0.0001。   图1A,B:纺锤体中心染色质分数的代表性示例和定量:对照(n = 51个细胞) ,ΔCondensin(n = 65个细胞),ΔCondensin+TSA(n = 34个细胞),TSA(n = 61) 。图1C:DNA密度的定量:对照(n = 31个细胞) ,ΔCondensin(n = 89个细胞) ,ΔCondensin+TSA(n = 99个细胞),TSA(n = 74)。图1D – F:染色质中微管密度的代表性示例和定量(图1E)和细胞质(图1F):对照(n =来自7个不同细胞的10个pogractics),TSA(n = 10个来自8个不同细胞的n = 10个TSA)。图2a ,b:11个细胞的代表性示例和定量,每个细胞3个ROI 。图2C,D:8个细胞(未消除)和10个细胞(Alui消化)的代表性实例和定量 。图2E ,F:11个细胞的代表性示例和定量,每个细胞3个ROI。图2G – J:测量对照(n = 19个细胞),TSA(n = 24个细胞)和ALUI(n = 22个细胞)的线扫描和比率。图3a:未处理中期细胞的代表性示例(n = 27) 。图3A ,B:诺科唑处理细胞的代表性示例和定量:对照(n = 46),TSA(n = 31)。图3C,D:DSRED(n = 26) ,dsred(-7e)(n = 26),dsred(+9e)(n = 26)的代表性示例和量化。图3E,F:代表性的示例和量化:Nocodazole(n = 45个磁场的n = 94个液滴) ,聚合微管(n = 13个液滴的磁场) 。图4a ,b:n = 15个细胞的代表性示例和定量。   扩展数据图1A,B:HELA WT(n = 25),HELA SMC4-MAID-HALO(n = 25) ,HELA SMC4-HALO + 5-PHIAA(n = 25)的代表性示例和定量。扩展数据图1D,E:相间(n = 60),有丝分裂(n = 89) ,ΔCondensin(n = 59),ΔCondensin+TSA(n = 83)和TSA(n = 67)的代表性示例和定量 。扩展数据图1F,G:对照(n = 40) ,ΔCondensin(n = 59),ΔCondensin+TSA(n = 35)(n = 35)和TSA(n = 40)的代表性示例和量化。扩展数据图2A – E:对照(n = 42),ΔCondensin(n = 38)和ΔCondensin+TSA(n = 60)细胞(扩展数据图2D)和对照(n = 42) ,ΔCondensin(n = 42)和ΔCondensin+TSA(N = 62)(n = 62)(2D)(n = 42)(n = 42)(n = 42)(n = 42)(n = 42)(n = 42)(n = 62)(2D)(n = 42)(n = 42)(n = 42)(n = 42)(n = 42),扩展数据图3A,B:相间的代表性示例和定量(H2B-AC(n = 20) ,H3-AC(n = 20) ,H4K16-AC(n = 20))和有丝分裂(H2B-AC(H2B-AC(N = 20),H3-AC(N = 20),H4K16-AC(H4K16-AC(N = 20)))细胞。扩展数据图3C ,D:对照的代表性示例和量化(扩展数据图2B)和TSA处理(H2B-AC(n = 20),H3-AC(n = 20),H4K16-AC(n = 20)) 。扩展数据图3E ,F:细胞的代表性领域和未处理的(13个具有n = 4,574个细胞的字段),500 nm TSA(13个具有n = 4,926个细胞的字段),5 µM TSA(13个具有n = 4,653的领域)(n = 4,653)和Anisomycin(13个带有N = 4,188的细胞)。扩展数据图3G ,H:对照(n = 48),TSA(n = 48)和NCS(n = 32)细胞的代表性示例和量化。扩展数据图4A,B:对照的代表性示例和量化(n = 39) ,500 nm TSA/WASTOUT(n = 35),5 nm TSA(n = 40)和500 nm TSA(n = 40)细胞 。扩展数据图4C,D:ΔCondensin对照(n = 45) ,500 nm TSA/WASTOUT(n = 47) ,5 nm TSA(N = 40)和500 nm TSA(N = 40)细胞的代表性示例和定量 。扩展数据图5a,b:模拟的代表性示例和量化(n = 20),p300hat(n = 26) ,p300(D1399Y)(n = 20)转染的细胞。扩展数据图5C – E:纺锤体中心(扩展数据图5D)和染色质密度(扩展数据图5E)的代表性示例和定量模拟(n = 20),ΔCondensin+P300HAT(n = 20)(n = 20),ΔCondensin+P300(ΔCondensin+P300)(D1399Y)(d1399y)(N = 24)(N = 24)。扩展数据图6A – C:在不存在或存在TSA的情况下 ,电子断层图的更多示例;对照前期(n = 3),对照中期(n = 7),TSA Prometathase(n = 5)和TSA中期(n = 5)示例 ,从每个条件的每个条件10个不同的细胞中绘制的示例 。扩展数据图6E:对照(n = 44)和TSA处理(n = 36)细胞中有丝分裂持续时间的定量。扩展数据图6F:3个对照过后期细胞的代表性示例(顶行)和3个TSA处理过后期细胞的代表性示例(底行)。扩展数据图6G,H:来自3个生物学重复的对照(n = 64)和TSA处理(n = 110)细胞的定量 。扩展数据图7A,B:对照的代表性示例和量化(n = 77) ,注射ALUI(n = 41)和苯西霉素治疗(n = 83)细胞。扩展数据图7C,D:对照(n = 75)和注射ALUI(n = 60)细胞的代表性示例和量化。扩展数据图7E,F:在ALUI消化过程中表达细胞的p300的代表性示例和每个细胞的n = 12个细胞的定量 ,3个ROI 。扩展数据图7G ,H:在ALUI消化过程中凝蛋白消耗的细胞的代表性示例和N = 7个细胞的定量,每个细胞的定量,每个ROI 3。扩展数据图8a ,b:13个单元的代表性示例和定量。扩展数据图8C,D:8个单元的代表性示例和定量 。扩展数据图8E,F:n = 11个单元的代表性示例和定量。扩展数据图8G ,H:10个单元的代表性示例和定量。扩展数据图8i,J:表示未修饰(AF488,n = 26; AF594 ,n = 25)和乙酰化(AF488,N = 25; AF594,af594 ,n = 30)核小体阵列(AF488,n = 25)的磁场的示例和定量 。扩展数据图8K,L:28个单元的代表性示例和定量 。扩展数据图8M ,N:对照(n = 5) ,ΔCondensin(n = 7)和ΔCondensin+TSA(n = 8)细胞的代表性示例和定量,每个细胞为2-3个ROI。扩展数据图8O,P:在ALUI消化过程中MKI67-KO细胞的代表性示例 ,并定量N = 10个细胞,每个ROI 3。扩展数据图9a,b:微注射的MEGFP(-7)(n = 17)和SCGFP(+7)(n = 20)的代表性示例和定量 。扩展数据图9C ,D:微注射FITC-DEXTRAN( - )(n = 21)和FITC – DEAE-DEXTRAN(+)(+)(n = 10)的代表性示例和定量。扩展数据图9E,F:中期细胞的代表性示例(n = 4)以及对对照(n = 13)和TSA(n = 8)的诺科唑处理细胞的定量。扩展数据图9G,H:中期细胞的代表性示例(n = 4)以及对对照(n = 33)和TSA(n = 31)的诺科唑处理细胞的定量 。扩展数据图9i ,J:对照(n = 33)和TSA处理(n = 33)细胞中20 kDa葡萄糖分配的代表性示例。扩展数据图9K,L:对照(n = 22)和TSA处理(n = 33)细胞中70 kDa葡萄糖分配的代表性示例。扩展数据图9M,N:具有MEGFP(-7)(n = 69)和SCGFP(+7)(+7)(n = 73)的核小组液滴的代表性示例和定量 。扩展数据图9O ,P:具有FITC – DEXTRAN( - )(n = 69)和FITC – DEAE-DEXTRAN(+)(n = 57)的代表性示例和核体阵列液滴的代表性示例和定量。扩展数据图10a,b:n = 13个单元的代表性示例和定量。扩展数据图10c,D:n = 16个细胞的代表性示例和定量 。这项研究中的所有实验均在至少两个生物学重复中进行。   有关研究设计的更多信息可在与本文有关的自然研究报告摘要中获得。

本文来自作者[admin]投稿,不代表象功馆立场,如若转载,请注明出处:https://m1.xianggongguan.cn/life/202506-558.html

(27)
admin的头像admin签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • admin的头像
    admin 2025年06月18日

    我是象功馆的签约作者“admin”

  • admin
    admin 2025年06月18日

    本文概览:  本研究中使用的所有细胞系已定期测试对支原体污染的阴性。这项研究中的所有细胞系均来自先前在参考文献中描述的HELA“京都”细胞系。51. The cells were cul...

  • admin
    用户061803 2025年06月18日

    文章不错《有丝分裂的染色质相位过渡可防止微管穿孔》内容很有帮助

联系我们

邮件:象功馆@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信