乳腺癌,结肠和胰腺癌细胞中的有效药物组合

  除非另有说明,否则统计测试是双面韦尔奇的t检验 。使用Phyper函数进行了富集分析 ,以用于R.在B中进行超几何测试。根据Benjamini – Hochberg方法,进行了多个测试校正。如下所述,使用GDSCTOOLS进行生物标志物分析 。盒子图将中位值描述为中心栏 ,第一个四分位数和第三四分位数作为框边界,晶须延伸至第一个四分位数减去1.5×四分位数范围(下边界)或第三四分位四分位四分位数加1.5×Quartile-Quartile-Quartile范围(上边界)。该地区以外的点是单独绘制的。   从商业细胞库中获取细胞系 。所有细胞均在RPMI培养基中生长(补充了10%FBS,1%青霉素/链霉素 ,1%葡萄糖,1 mM丙酮酸钠)或DMEM/F12培养基(补充10%FBS,1%青霉素/链霉菌素)(补充表2)(补充表2)在37°C in 37°C in 37°C in Humidified co2 co2。为了防止交叉污染或错误识别 ,使用一组94个单核苷酸多态性图(流体 ,96.96动态阵列IFC)对所有细胞系进行了分析。还进行了简短的串联重复(STR)分析,并将细胞系轮廓与细胞系存储库产生的分析匹配 。所有细胞系通常对支原体进行测试,对支原体为阴性 。有关本研究中使用的细胞系的更多信息 ,包括它们的源和分子分析数据集,请参见补充表2和细胞模型护照数据库30(https://cellmodelpassports.sanger.ac.ac.uk)。   化合物来自商业供应商(补充表1)。DMSO溶解化合物在室温下以低湿度储存(<12% relative humidity), low oxygen (<2.5%) environment using storage pods (Roylan Developments). Water-solubilized compounds were maintained at 4 °C. For 8 compounds their identities and purity were confirmed by UHPLC-MS. Identity was confirmed by mass spectrometry (6550 iFunnel Q-TOF LC/MS, Agilent Technologies) using electrospray ionization in positive and/or negative modes. Anchor and library concentrations were drug- and tissue-specific and determined using a two-step process. First, drug concentrations were selected based on primary literature, in vitro data of minimum concentrations inhibiting relevant target activity and viability31, clinical data indicating achievable human plasma concentrations, or where known concentrations that induce sensitivity in a biomarker positive cell line. Additionally, a pilot screen, testing a 1,000-fold concentration range of each drug in 9–13 cell lines per tissue (breast: 13, colon: 9, pancreas: 12), was performed and concentrations optimized to give a range of sensitivities across the cell lines. Anchor drugs were screened at two fixed concentrations with a 2-, 4- or 10-fold difference between them to give moderate activity (50–90% viability) across the cell lines within each cancer type. Screening concentrations (Supplementary Table 1) typically did not exceed 10 μM and were in the range of human plasma exposures achievable in patients32. Library drugs were screened at seven concentrations spanning a 1,000-fold range with a non-equidistant log2 design of four 4-fold steps followed by two 2-fold dilution steps starting at the lowest used concentration. The use of this design was based on the observation that higher concentrations were most informative and would benefit from denser profiling. As an alternative to μM concentration ranges, drug concentrations and IC50 values can be visualized on a standardized log2 scale, with 9 being equivalent to the highest screened concentration. Each screening plate contained five replicates of the anchor alone (high and low concentrations) and four replicates of the library alone (full dose response). A single replicate of the combination dose response was performed in the primary screen.   Cells were transferred into 1,536-well plates in 7.5 μl of their respective growth medium using XRD384 (FluidX) dispensers. The seeding density was optimised prior to screening to ensure that each cell line was in the exponential growth phase at the end of the assay. For this, six seeding densities with a two-fold dilution step were each dispensed into 224 wells of a single 1,536-well assay plate (XRD384 (FluidX) dispenser) and cells were incubated for 96 h. Cell number was quantified using CellTiter-Glo 2.0 (Promega). The maximum density tested varied based on cell type, typically 5,000 cells per well for suspension cells and 1,250 cells per well for adherent cells (Supplementary Table 1). Assay plates were incubated at 37 °C in a humidified atmosphere at 5% CO2 for 24 h then dosed with the test compounds using an Echo555 (Labcyte). Final DMSO concentration was typically 0.2%. Following dosing with compounds assay plates were incubated, and the drug treatment duration was 72 h. To monitor cell growth over the duration of drug treatment, a parallel undrugged control plate was assayed at the time of drug treatment and referred to as a ‘day = 1’ plate. This was repeated each time that a cell line was screened. To measure cell viability, 2.5 μl of CellTiter-Glo 2.0 (Promega) was added to each well and incubated at room temperature for 10 min; quantification of luminescence was performed using a Paradigm (Molecular Devices) plate reader.   All screening plates contained negative control wells (untreated wells, n = 6; DMSO-treated wells, n = 126) and positive control wells (blanks—that is, medium-only wells, n = 28; staurosporine-treated wells, n = 20; and MG-132 treated wells, n = 20) distributed across the plate. We used these positive and negative control wells to test whether the plates meet defined quality control criteria. A maximum threshold of 0.18 was applied to the coefficient of variation (CV) of the DMSO-treated negative controls (CV = σN/μN, where σN is the s.d. of the negative control and μN is the mean of the negative control). Using the DMSO-treated negative control (NC1) and the two positive controls (PC1 and PC2), we determined Z-factors (also known as Z′; Z-factor = 1 – 3 × (σP + σN) / (|μP − μN|), where σN and σP are the s.d. of the negative and positive controls, respectively, and μN and μP are the mean of the negative and positive controls, respectively). The Z-factors were calculated for all plates that indicate sensitivity of the cell lines to the positive control (ratio of NC1:PC ≥4). In case a cell line is insensitive to both positive control drugs, the Z-factors were calculated based on blank wells instead. Z-factors were required to exceed a minimum threshold of 0.3 for individual plates and a mean of 0.4 across all plates within a screening set. Where a cell line was sensitive to both positive controls, it had to pass Z-factor thresholds for both positive controls. Plates that did not meet these requirements were excluded from the study. Overall, 3,106 (>70%) of 1,536-well microtitre screening plates passed coefficient of variation and Z-factor thresholds. Wherever possible, failed plates were repeated, leading to dataset completeness of more than 96% for all three tissues (breast: 96.5%, colon: 99.8% and pancreas: 99%).   For each plate, the raw fluorescent intensity values were normalised to a relative viability scale (ranging from 0 to 1) using the blank (B) and negative control (NC) values (viability = (Fluorescence of treated cells − B)/(NC − B)). Anchor viability was determined from the mean across the five replicate wells screened on each plate. All library drug dose responses were fitted as a two-parameter sigmoid function33. The dose–response curves for the combinations were fitted similarly, butwith two notable differences: (1) the cell line parameters were obtained from the library drug fits; (2) the maximum viability was capped at the anchor viability (rather than from 0 to 1). We use the 50% (inflection) point of the sigmoidal curve between zero and the anchor viability for both the expected Bliss and the observed combination. We extended the model to nest each replicate within the drug or cell line to obtain stable estimates from the replicate experiments. To assess the quality of the fits, we computed the root mean square error (RMSE) and excluded curves with RMSE >0.2(等于测量值的1.5%) 。EMAX和IC50基于拟合曲线。据报道,该药物的测试浓度最高。   为了检测协同作用 ,我们比较了观察到的组合响应与预期组合反应 。对于后者,我们仅使用了对锚和图书馆药物的反应的幸福独立9。从概念上讲,幸福剂量响应曲线上的每个点都定义为锚固性和库剂量响应曲线上的相应点之间的产物。计算效力(∆IC50)和功效(∆Emax)的变化是观察到的组合响应与预期幸福(∆IC50 = Bliss IC50-组合IC50 IC50)和∆Emax = Bliss Emax-组合EMAX之间的差异 。∆IC50在log2量表上报告。   如果组合IC50小于筛选库浓度最高的两倍 ,并且∆IC50或∆Emax高于特定阈值,则给定的测量是协同作用的:∆IC50≥3(23等于IC50中的8倍移位)或ΔEmax≥0.2(20%的可依性)。如果一半或更多的重复测量显示协同作用,则将重复测量的“锚固型–细胞线”元素总结为协同作用 。为了总结这两个锚固浓度 ,如果在任一锚浓度下观察到协同作用,我们认为“组合 - 细胞线 ”对是协同作用。   为了评估屏幕中的可重复性,我们生成了2-18个生物学重复 ,每组组织4-5个细胞系(乳腺:5(AU565 ,BT-474,Cal-85-1,HCC1937 ,MFM-223); MFM-223); COLON:4(HCT-15,HT-29,HT-29 ,HT-29,SK-CO-1,SW620 ,SW620);MZ1-PC,PA-TU-8988T,suit-2))。在技​​术重复(通常每个生物学重复)和相关(Pearson相关系数;最低322个生物学复制对 ,每个“度量通讯”对)之间平均单位和组合响应平均 。   为了评估屏幕的可重复性,我们在每个组织中重新分组了一个组合的子集(乳房:34个细胞系中的51个组合;结肠:37个细胞系中的45种组合;胰腺:29个细胞系中的59个组合;补充表2) 。药物组合反应在屏幕中的重复范围内平均,单位代理的关键指标和组合响应之间的关键指标在两个屏幕之间相关(Pearson相关系数)。为了确定协同调用的质量 ,原始屏幕被视为地面真理和真实正面(TP) ,假阳性(FP),真为负(TN)和假阴性(FN)协同组合 - 细胞线对。这些用于计算F-评分(F-SCORE = TP/(TP + 0.5×(FP + FN))),召回(召回= TP/(TP + FN))和Precision(precision = tp/(tp/tp + fp))每个组织 。为了研究FP和FN测量值的ΔEmax和ΔIC50的效应强度 ,计算了每个“锚浓度浓度 - 纤维 - 细胞线”元组的ΔIC50协同阈值的距离,基于重复的组合响应(n = 9,570个tumples)。   单格(库IC50)和组合响应(EMAX组合,∆IC50 ,∆EMAX)的矩阵用作GDSCTOOLS ANOVAS15的输入。为了获得单个组合EMAX,每个细胞系兼容对的∆IC50和∆Emax值,对每个锚浓度浓度 - 纤维–细胞线元素的复制平均响应进行平均 ,并比较了两个锚固浓度的组合度量的组合:两种量子的较大范围均与量的较小量相分为∆IC50和iDΔCOMAX的效果 。组合。A range of binary feature files were used, including multi-omics binary event matrices (MOBEMs) composed of genes known to be mutated, amplified or homozygously deleted in human cancers5 (number of features = 1,073), CELLector signatures34 (n = 227 for breast, n = 261 for colon), RNA-seq gene expression35 (n = 1,184; original dataset accession numberE-MTAB-3983),CRIS36和PAM5037,38分类。基因表达仅限于由使用药物的靶标组成的一组策划的基因,BCL2家族的其他成员和与凋亡相关的基因39 ,与癌症相关的基因与癌症40相关,其突变被列为Mobems5,40和Cellector 5,34,40,40,40特征文件中的突变 。通过z得分为分子环境测试的分子环境的细胞系子集的每个变量,将基因表达的连续值二进制 ,并代替z得分≥2代表代表特征升高的二进制值(即“ gene_up ”) ,z得分≤-2的二进制特征,代表了该特征的特征。总体显着性阈值为P≤0.001和FDR≤5%。   使用Reactome18人类交互文件(2021年4月访问),在Intact12(2021年7月访问)中报告了二进制二进制 ,无向相互作用的相互作用(https://cran.r-project.org/web/web/package.org/web/packages.org/web/packages/praph/citath/citation.html)(2021年4月访问) 。除去了所有非蛋白质节点和重复的相互作用,从而导致了5,556个Uniprot蛋白节点的非导向网络,而Reactome Interconome组的网络则为25,731个边缘。对于完整的相互作用组 ,应用了0.5的证据过滤器,并去除所有非蛋白质节点和重复的相互作用,从而导致非指导网络为14,431个蛋白质节点和110,118个边缘。药物靶标和生物标志物特征被手动映射到其UniProt蛋白质组识别符(UPID) ,其中66个(86.3%)的药物靶标概况中有57个被映射到一个或多个上的UPID,而在1,501(42.2%)中有633个生物标志物在一个或更多的upids中映射 。对于化学治疗药,PAM50 ,CRIS,不可能进行UPID映射,并且对于与癌症驱动基因无关的甲基化位点不可能 。使用IGRAPH计算了所有节点之间的距离矩阵:报告了在同一网络中不存在的节点的无限值。当计算药物靶标或药物靶标与生物标志物之间的最短距离时 ,计算所有目标目标或靶标生物标志物对的距离 ,并报告了最小的距离。例如,对于具有两个靶标的药物与具有三个靶标的药物相结合,将报告最短的六个目标目标距离 。为了模拟假阳性生物标志物关联 ,在重新计算新的“假”生物标志物和药物靶标之间的最短距离之前,在不替换的情况下随机洗牌的生物标志物特征。   通过https://clinicaltrials.gov/从API中提取临床试验数据(2021年3月访问),并使用R脚本进行了搜索 ,并以“ drug1 + drug2 + cancer +组织”格式进行搜索。手动策划获得的试验列表,以确保药物是确切的匹配,并使用放射疗法以及药物组合治疗删除试验 。在临床需求的种群中 ,搜索限制为81种组合,协同作用≥25%。   为了测试CHEK特异性,我们在96孔板(每孔770–2,750个细胞)中播种SW620 ,SW837,SNU-81或LS-1034细胞,并用camptothecin(锚固 ,0.025μm)与六个CHEK抑制剂(库中)(锚定为1μm最高)(锚定)用camptothecin(锚 ,0.025μm)进行处理。CHEK2),Prexasertib(Chek1,Chek2) ,MK-8776(CHEK1,CHEK2,CDK2) ,SAR-020106(CHEK1),Rabusertib(CHEK1)和CCT241533(CHEK1)(CHEK2;2μm) 。用CellTiter-GLO 2.0(CT​​G; Promega)测量了96小时药物治疗可行性后。如上所述,对药物反应曲线进行了拟合。   对于siRNA实验 ,SW837和SNU-81细胞(分别为8,000和16,000个细胞)用非靶向池的siRNA作为负对照(SINT; DHARMACON,D-001810-10-05)反向转染(Dharmacon,L-003255-00-0005)或使用Lipofofectamine rnaimamine rnaimax(Thermofisher)(Thermofisher) 。30h后 ,添加0.025μm或0.001–9μmSN-38或DMSO的剂量范围,并在72小时后使用CTG测量活力。信号归一化为SINT+DMSO对照。使用双面韦尔奇的t检验测试了条件之间的统计显着性 。   将细胞接种在96孔板中(通常每孔5,000–16,000个细胞) 。24小时药物(0.125μMStaurosporine(阳性对照),0.025μmSN-38 、0.75μmRabusertib ,0.75μmCCT241533)或DMSO和实时荧光荧光试验(用于检测细胞死亡)(Celltox Green; 1:1,000; PROME; PROME; PROME-3/caspase-3/caspase-3/caspase-3/caspase-3/caspase-3/caspase-3/caspase-3/caspase-3/caspase-3/caspase-3/caspase-3/casep)1:1,000;使用incucyte(Essen Bioscience)每2小时记录每2小时96小时的图片。记录的荧光信号测量为每个细胞区域的平均强度 ,并标准化为时间0 h。   将细胞以每孔50,000个细胞为6孔板中 。Drugs (0.1 nM SN-38, 0.5 μM rabusertib, 0.5 μM CCT241533) or DMSO were added on day 1 and were refreshed through medium change on day 8. 14 days after drug treatment started the cells were fixed in 4% paraformaldehyde (Sigma-Aldrich) in PBS for 10 min at room temperature, and then stained with Giemsa (10%;Sigma-Aldrich)在室温下至少30分钟。   将SW837(100万)或SNU-81(150万)细胞播种在10 cm菜肴中,并用药物治疗(0.025 nm SN-38,1.5μmRabusertib ,1.5μMCCT241533,2041533,2μmmg-132(阳性对照))或DMSO或DMSO。72小时后 ,收集活细胞和死细胞,并在补充有1 mM DTT(Cayman Chemicals)和蛋白酶和磷酸酶抑制剂(Roche)的RIPA缓冲液(Sigma-Aldrich)中裂解 。使用Bradford试剂(Thermofisher)确定总蛋白质含量,并将约20μg的裂解物加载到SDS-PAGE的4–12%Bis-Tris凝胶(Invitrogen)上 ,然后将蛋白质从凝胶转移到PVDF膜上。将膜在5%的牛奶(以TBST为单位)中阻塞,并与适当的抗体孵育过夜。用TBST洗涤印迹,并在室温下与二抗孵育1小时 。在用超级信号硬脑膜增强信号之前 ,将印迹在TBST中洗涤并可视化。以下主要抗体用于免疫印迹分析:抗PARP(细胞信号技术,9542,1:1,000;兔子)和抗β-微管蛋白(Sigma-Aldrich ,T4026 ,1:5,000;小鼠)作为负载对照。   对于CHEK1和CHEK2敲低的实验,如上所述,用SINT ,SICHEK1或SICHEK2对SW837或SNU-81细胞进行反向转染 。转染后72小时收集细胞,并在RIPA缓冲液(Sigma-Aldrich,R0278)中裂解 ,并根据制造商的指示使用BCA分析(Novagen,71285-3)确定蛋白质浓度。SDS–PAGE and western blots were conducted as described above and the following primary antibodies were used for immunoblot analysis: anti-CHEK1 (Santa Cruz Biotechnology, sc-8408, 1:200; mouse), anti-CHEK2 (Cell Signaling Technologies, D9C6, 1:1,000; rabbit), and anti-β-actin (Abcam, ab6276, 1:5,000; mouse) as a加载控制。抗小鼠IgG(GE Healthcare,NA931)和抗兔(GE Healthcare ,NA934; 1:2,000)HRP连接的二抗作为二抗体 。Pageruler加上预先的蛋白梯,10–250 kDa(Thermofisher,26620)用作分子量标记 。   在30%基质尔中 ,总共4.5×106 LS-1034细胞,5×106 SW837细胞或2.5×106 SNU-81细胞被皮下注射到男性和女性6周龄的NOD/SCID小鼠的右侧。一旦肿瘤达到平均体积约为300-400 mm3,小鼠就会随机分为治疗臂 ,n = 12(Irinotecan和Irinotecan+Rabusertib)或N = 6(车辆和Rabusertib)每组。rabusertib每天口服200 mg kg -1(车辆:16.66%Captisol; Cydex ,在25 mm的磷酸盐缓冲液中,pH 4);腹膜内腹膜内服用25 mg kg -1两次(车辆:生理盐水) 。每周通过Calliper测量评估肿瘤的大小,并使用公式(4π/3)×(d/2)2×(d/2)计算质量的大致体积 ,其中d是次要肿瘤轴,d是主要的肿瘤轴。当每个治疗组至少有4只小鼠达到预先指定的终点时(至少在每个治疗组中平均体积大于2,000 mm3的肿瘤的治疗或发展至少3周,旨在评估药物疗效的试验中 ,至少3周的治疗后肿瘤后3周以较大的较大的较大的疗程therement thumet tumimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimimigimimimimimigimimimiate thugimeartimeary,则可以认为结果可解释。意大利卫生部在授权编号中允许的终点为20 mm 。806/2016-PR,符合国家准则和法规。在任何实验中 ,该端点均未超过。在测量过程中,操作员被盲目视而不见 。使用实验室助理SUITE 41管理体内程序和相关的生物群体数据。所有动物程序均由Candiolo癌症研究所的机构动物护理和使用委员会和意大利卫生部批准。   使用双向方差分析计算治疗过程中肿瘤体积变化的统计显着性 。为了进行终点比较,统计分析是由两尾未配对的韦尔奇的t检验进行的。生存实验中的统计分析是通过对数秩(Mantel – Cox)检验进行的。对于所有测试 ,统计显着性水平均设置为p <0.05 。生成图,并使用GraphPad Prism(v9.0)统计软件包进行统计分析 。   在用媒介物处理的小鼠的异种移植物中(直到肿瘤达到平均体积为1,500 mm3)或指定的化合物(72小时后),对Ki67 ,活性caspase-3和磷酸-H2AX免疫反应的形态定量进行。使用以下抗体进行组织学质量检查和免疫组织化学分析 ,并进行以下抗体:小鼠抗KI-67(MIB-1)(Dako,Ga626,1:100) ,兔子抗抗囊caspase-3(Asp175)(Asp175)(ASP175)(Asp175)(96666666666661,200),对肿瘤(n = 1-3)进行了组织学质量检查和免疫组织化学分析。(Ser139)(20E3)(单元信号,9718 ,1:400) 。与继发抗体孵育后,通过DAB Chromogen(Dako)揭示了免疫反应性。使用Leica DM LB显微镜使用Leica Las EZ软件捕获图像。使用光谱图像分割通过ImageJ软件进行形态定量 。通过视觉检查数字图像手动验证软件输出。每个点表示在一个光场中测量的值(KI67和磷酸-H2AX的40倍;有效caspase-3的20倍),具有2-10个光场(KI67和Phosho-H2AX)和3-5个光学场(KI67和Phosho-H2AX)和3-5个光场(主动caspase-3)(n = 12-30)(n = 12-30)(n = 12-30); N = 12-30;caspase-3)。这些图显示平均值±S.D.两尾未配对的韦尔奇的t检验进行了统计分析 。   有关研究设计的更多信息可在与本文有关的自然研究报告摘要中获得。

本文来自作者[admin]投稿,不代表象功馆立场,如若转载,请注明出处:https://m1.xianggongguan.cn/zixun/202506-1693.html

(22)
admin的头像admin签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • admin的头像
    admin 2025年06月21日

    我是象功馆的签约作者“admin”

  • admin
    admin 2025年06月21日

    本文概览:  除非另有说明,否则统计测试是双面韦尔奇的t检验。使用Phyper函数进行了富集分析,以用于R.在B中进行超几何测试。根据Benjamini – Hochberg方法,进行了...

  • admin
    用户062102 2025年06月21日

    文章不错《乳腺癌,结肠和胰腺癌细胞中的有效药物组合》内容很有帮助

联系我们

邮件:象功馆@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信