C57BL/6只小鼠和K18-HACE2小鼠(应变:B6.CG-TG(K18-ACE2)2PRLMN/J)购自杰克逊实验室。FGA - / - 小鼠52和FGGγ390–396A小鼠53获自J. Degen 。在12 h – 12 h的光线周期下,小鼠在20±2°C下的相对湿度为55±5%,并随意使用标准实验室食物和水。使用雄性和雌性小鼠。每个实验程序都指示小鼠年龄 ,并且在3至7个月以内 。所有感染实验均在Gladstone Institutes的AAALAC认可的ABSL3设施上进行。所有动物程序均根据加利福尼亚大学旧金山分校的机构动物护理委员会制定的准则进行。
人类柠檬酸的血浆(Iplaseatnac50ml,1151254)购自创新研究 。新鲜的PBMC(LP,FR ,MNC,2B; 3118730和3112992)购自Allcells。该研究中使用的所有人类材料均可在市售,并且没有招募人类参与者。
The plasmid vector pCAGGS containing the SARS-CoV-2,Wuhan‐Hu‐1 ectodomain spike gene with a deletion of the polybasic cleavage site (RRAR to A), two stabilizing mutations (K986P and V987P), a C-terminal thrombin cleavage site, T4 foldon trimerization domain and a hexahistidine tag(6×HIS)是从BEI资源(由F. Krammer存放)获得的54 。重组尖峰是通过细胞修道院在CHO细胞中的瞬时转染产生的。通过Ni2+-NTA亲和色谱纯化尖峰 ,在含有咪唑的磷酸盐缓冲盐水(PBS)中洗脱,缓冲液交换为1×PBS,并通过尺寸 - 排斥色谱法(SuperDex 200列)纯化。
血浆凝块测定中的纤维蛋白聚合通过浊度17测量 。简而言之 ,健康的供体柠檬酸血浆(创新研究)在20毫米HEP中以1:3稀释。重组尖峰将缓冲液切换为20 mm HEPES,pH 7.4,137 mm NaCl(Amicon浓度器 ,100 kDa截止器)。将等体积(50 µL)等离子体和缓冲尖峰在25°C下孵育15分钟。凝块由0.25 U ML-1凝血酶(Sigma-Aldrich)和20 mM CaCl2启动 。最终浓度为1:12血浆,0.75μm尖峰,0.25 U ML -1凝血酶,20 mM CaCl2。使用Soptramax M5微板读取器(分子设备) ,使用SoftMax Pro V.5.5(Phoenix Technologies),每15 s每15秒钟以340 nm的速度测量浊度30分钟。
健康的供体柠檬酸血浆在20 mm HEPES缓冲液中以1:3稀释,pH 7.4;将15μl稀释的血浆与15μl的重组尖峰混合 ,使用低浓度的NaCl保持尖峰的溶解度和稳定性,将缓冲液切换为20 mM HEPES和137 mM NaCl(Amicon浓缩剂,100 kDa切口) 。然后 ,将25μl的混合物吸入到5 mm×5 mm的硅晶片(TED PELLA)上,并在37°C下在加湿的组织培养孵化器中在37°C下孵育15分钟。然后,将25 µL的CaCl2和凝血酶溶液在20 mM HEPES中加入晶片中心 ,并在25°C下聚合2小时。最终浓度如下:等离子体1:12,0.9μm尖峰,0.25 U ML -1凝血酶 ,20 mM CaCl2 。使用缓冲液代替尖峰进行车辆控制。将晶片上的凝块放在冰上,将两次洗涤10分钟,用冰冷的EM级0.1 m cacodylate缓冲液,pH 7.4洗涤 ,并用冷级别2%戊二醛(电子显微镜科学)固定。将样品用几米过滤,双倒流的水冲洗3次,持续5分钟 。在乙醇系列中脱水(20% ,50%,70%,90% ,100%,100%,每2分钟);和二氧化碳干燥的关键点。将样品用薄薄的金 - 宝座覆盖 ,并在3.0 KeV和二级电子检测器的Zeiss Merlin场发射SEM上成像。
在样品中捕获了放大倍数的图像,然后使用NIH ImageJ(v.1.50)将其转换为8位 。如前所述55,使用NIH DiameterJ将像素到μM缩放后 ,将每个图像裁剪成两或三个FOV(8×8μm)。ImageJ中的表面图插件生成了SEM图像的地形图。简而言之,根据图像的并排比较,预选了最佳的分割算法。内置直径段的混合分割(M1至M3)提供了要量化的纤维的最准确表示 。在所有测试条件和图像中使用了相同的分割方法和变体。使用ImageJ手动编辑每个分段图像,以确保分段纤维的完整表示。使用直径1-108(未选择方向分析)处理编辑的图像 。从每批整理纤维半径和交点密度。每个样品中的8-10个FOV的数据用于组分析。图1F中的光纤半径分布是使用收集的所有图像中的FOV计算得出的 ,以评估整个数据集的分布 。基于图1F中的三个生物学独立实验以及这些实验中各个图像的定量和统计分析,对纤维半径的比例进行了统计分析。由于潜在的SEM临界点干燥技术伪像,其导致纤维塌陷的样品被排除在进一步分析之外。
为了通过SEM量化纤维蛋白凝块 ,在每个半径上,在所有图像中估计了在尖峰下与对照条件下所选半径的对数转换的检测纤维的差异(在给定图像中的所有视图中)的差异 。使用广义线性混合效应模型估算每个半径上的对数转换的优势比,将家庭参数设置为二项式 ,并在R56中的LME4(V.1.1-27)中实现在GLMER函数中,其中观测值的图像源是随机效应的。使用HOLM程序57校正P值进行多次测试。在图1F中,P值表示两个垂直虚线之间半径范围内每个半径的显着性 。实线代表最佳的黄土拟合曲线 ,跨度参数设置为0.45。
如前所述,制备了纤维蛋白原和纤维蛋白涂的板17。简而言之,通过添加20 mM HEPES缓冲液 ,涂覆纤维蛋白原板或20 mM HEPES Buffer pH 7.4,用1 U ML-1溶血蛋白(Sigma-Aldrich)(Sigma-Aldrich)和7 mM Cacl2添加20 mM HEPES缓冲液,将无纤溶酶原纤维蛋白原(EMD Millipore(EMD Millipore)进一步稀释至25 µg mL-1。如前所述17,使用96孔Maxisorp板(Thermo Fisher Scientific)在37°C下进行1.5小时 ,并在37°C下干燥纤维蛋白涂层板过夜,如前所述17 。
用洗涤缓冲液(PBS中的0.05%Tween-20)洗涤纤维蛋白或纤维蛋白原涂层的96孔板,并与由5%牛血清白蛋白(BSA)(Omnipure ,Thermo Fisher Scientific)在25°C下孵育1 h。重组尖峰或S1(N501Y)的连续稀释液在结合缓冲液(含0.5%BSA的洗涤缓冲液)中进行。将重组尖峰或S1(N501Y)添加到井中,并在37°C下孵育2小时 。用洗涤缓冲液洗涤五次后,将兔多克隆抗6×他的TAG抗体(AB137839 ,ABCAM,1:1,000)添加到板上,并在25°C下孵育1小时。洗涤后 ,将山羊抗兔IgG H&L(与马萝卜过氧化物酶,HRP结合)(AB205718,ABCAM ,1:1000)在25°C下添加1小时。最后洗涤后,将HRP底物3,3',5,5'-四甲苯苯胺(TMB; Sigma-Aldrich)添加到井中 。通过添加1 N盐酸淬灭反应,并在450 nm处测量吸收。使用Graph Pad Prism 9软件分析了非线性回归曲线 ,以使用一个位点结合模型来计算KD值。
一个定制的pepstar多醇纤维蛋白原肽阵列,该肽阵列包含一个合成肽库,其390 15-mer肽代表了α ,β和γ纤维蛋白原链的重叠的肽扫描(15/11)(15/11)技术 。将阵列与重组HIS标签的三聚体尖峰(在阻止缓冲液中1 µg ml-1)杂交1小时。HIS-TAG肽(Aghhhhh)也被固定在肽微阵列上作为测定控制。将微阵列载玻片在30°C下与Alexa 647抗6×他的单克隆抗体(MA1-135-A647,Invitrogen)在阻塞缓冲液中稀释至1 µg ml-1 。在每个步骤之前,用洗涤缓冲液 ,50 mm TBS挡板洗涤微阵列,包括0.1%Tween-20,pH 7.2。测定缓冲液是低串缓冲液(坦率的生物科学)。用高分辨率激光扫描仪在635 nm的高分辨率激光扫描仪洗涤 ,干燥和扫描载玻片,以获得荧光强度曲线。对图像进行量化以产生每个肽的平均像素值 。为了评估与肽和测定性能的非特异性结合,在每张载玻片上并行进行了与二抗的对照孵育。使用点 - 识别软件(Genepix ,Molecular Devices)分析并量化所得图像。对于每个位置,提取平均信号强度(在0到65,535个任意单位之间) 。计算热图并对荧光强度进行颜色编码。使用UCSF Chimera58映射结合肽上的结合肽上的纤维蛋白原晶体结构(蛋白质数据库(PDB):3GHG)。对于尖峰肽阵列,将1、0.1或0.01 µg ml-1 His标记的重组人纤维蛋白原γ链(NOVUS BIO)与SARS-COV-2峰值糖蛋白变异蛋白变体肽微阵列(JPT)杂交 。使用与Alexa 647结合的抗HIS二抗检测到结合。仅使用抗HIS二抗体检测到非特异性结合。另外,将1 、0.1或0.01 µg mL-1 Alexa-647纤维蛋白原(Invitrogen)杂交在尖峰糖蛋白变异蛋白变体收集微阵列上 ,并在相对光线(RLU)中直接通过荧光强度(RLU)直接检测肽结合 。通过使用RAW RLU进行并排比较而生成热图。使用PDB(6VSB)映射纤维蛋白原上的尖峰糖蛋白结合位点。
使用定制的Pepstar多醇微阵列(JPT)进行丙氨酸扫描,其中含有60种代表纤维蛋白原肽γ377-395(YSMKKTTMKIPFNRTIG)上每个残基的ALA取代的肽 。人类的全长IgG和His标记的肽在微阵列载玻片上被共缩合为对照。用五个浓度(从10μgml-1到0.001μgml-1)施加His标记的尖峰,并在30°C下孵育1小时。分别添加两种特定于他的标签的荧光标记的二级抗体1小时。如上所述进行洗涤和检测 ,并相对于原始肽分析了数据 。ALA取代后的信号表明残基是否与峰值结合。
使用MOE计算模块的结构制备应用固定人纤维蛋白原(PDB:3GHG)的晶体结构。SARS-COV-2 SPIKE(PDB:6VSB)的晶体结构缺少用于柔性环的结构信息 。为了纠正这些内容,使用了MOE 2022.02软件(化学计算组)中的同源模型应用程序,其中包括:(1)初始部分几何规范;(2)插入和删除;(3)循环选择和Sidechain包装;(4)最终模型的选择和改进。使用MOE的蛋白质几何形状立体化学质量评估工具对同源模型进行了检查。通过分配质子化和电离态制备尖峰晶体结构(PDB:6VSB) 。
使用蛋白质 - 蛋白质功能 ,通过对MOE的计算模块的码头应用将两种蛋白质的对接进行。该应用程序使用刚体对接从可能的绑定位置的池中生成了对接配置的集合。为了完成对接过程,根据上述肽阵列确定结合位点 。选择三个潜在的结合位点用于纤维蛋白原:(1)β链中的119yllkdlwqkrq129;并且,在γ链中 ,(2)163QSGLYFIKPLKANQQFLVY181和(3)364DNGIIWATWKTRWKTRWYSMKKTTMKIPFNRTIG395。对于配体(尖峰蛋白),选择了五个位点。NTD结合区域:(1)37yypdkvfrssvlhstqdlflpffsnvtwfhaihvsgtngtngtngtkrfdnpvlpfndgvyfasteksniirg103,(2)229lpiginitrfquginitrfqtllalhralhralhrslalhrslyltp251 and(3)3051 。RBD区域:(4)341Vfnatrfasvyawnr355;和S2域:(5)1049LMSFPQSAPHGVVFL1063。在受体后 ,定义了配体和对接位点,将MOE计算模块的扩展坞应用参数设置为:细化 - 辅导体,姿势-10。该应用程序创建了10个姿势,分析的输出得分 ,配体对接能量和停靠的姿势,并检测到了最好的姿势;中间姿势也保存在对接数据库文件中。
在对接计算过程中,该程序介绍了10种最佳能量复合物 。之后 ,每个配合物都经历了能量的其他计算。还将每个复合物中的纤维蛋白原分子的计算丙氨酸扫描与纤维蛋白原中的每个残基进行了实验取代为丙氨酸的残基,并在计算上取代了丙氨酸并进行了建模。最佳模型是根据最低的对接能量选择的 。计算丙氨酸扫描产生了每个氨基酸取代的所有能量值之间的相关值,以及用于估计每个氨基酸影响的参数的实验值。使用Ligplot+ v.2.2分析了该计算预测复合物相互作用的残基。
使用Alexa Fluor 647共轭套件闪电链(ABCAM)对溶解在0.1 M PBS中的Spike S1(N501Y)(杂技系统)(20μg)荧光标记 。Alexa-Fluor-647标记的Spike S1(N501Y)的浓度为1 mg ml-1。在含有20μgAlexa-647偶联的Spike S1(N501Y)和30μgAlexa-546标记的人纤维蛋白原(Invitrogen)的0.1 mL PBS溶液的重新注射下 ,在等异氟烷麻醉(1 mL胰岛素胰岛素辅助下)与30-GAUGE进行30-GAUGE。注射肝素PBS后1天灌注小鼠,并用4%多聚甲醛(PFA)固定,并收集肺进行清除 。
如先前所述59进行3DISCO肺组织清除。Mouse lungs were placed into a 20 ml scintillation glass vial and incubated in 20 ml of THF (Tetrahydrofuran, Roth, CP82.1) gradient in distilled water in a fume hood with gentle shaking at 50% once, 70% once, 80% once and 100% twice for 6 h for each step, followed by 3 h in dichloromethane (DCM, Sigma-Aldrich,270997)。将样品浸入BABB溶液(苄醇 +苯甲酰苯甲酸酯1:2(v/v) ,Sigma-Aldrich,24122和W213802)中,直到光学透明 。使用Imspector Pro V.7.0.98对肺组织进行成像 ,并在装有乙基肉桂(ECI)(Sigma-Aldrich)的石英比世馆中的Lavision Biotec ultroscroscope II灯显示显微镜。为了进行成像,使用×2物镜(像素尺寸,x和y的3.25 µm)的MVX10变焦体(Olympus),使用了从×0.63到×1.6的放大倍率。每个肺最多使用3.5 µm的Z-Step尺寸拍摄1,400张图像 ,而灯表数字光圈为0.111 Na。根据激发的荧光团:自动荧光的525/50,使用了带通发出的过滤器(平均NM/扩散);AF546的595/40;AF647和680/30 。单通道的曝光时间为10 ms,多通道采集的曝光时间为25 ms。Imaris v.9.5.0(BITPLANE)用于3D渲染。从未还原的16位图像元数据更新像素尺寸 。Imaris中的表面对象用于3D渲染焦点沉积和代表性体积ROI中的尖峰分布。
凝结之前 ,将3μM纤维蛋白原与9μM重组峰值蛋白在37°C下在20 mm HEPES,pH 7.4,137 mm NaCl ,5 mm CaCl2中孵育1小时。在最终浓度为1.5 U mL -1的终浓度下添加凝血酶 。在37°C下,允许在Eppendorf管中形成纤维蛋白血块2小时。然后,将5μl的100μgml -1纤溶酶(Millipore)添加到凝块顶部的每个管中。将所有样品在37°C下孵育0、1、2 、4和6小时;通过添加十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳(SDS -PAGE)加载缓冲液和还原剂来消除消化 。将样品在85°C加热20分钟 ,并通过4-12%BIS-Tris凝胶上的SDS-PAGE分离等分试样(相当于100 ng纤维蛋白原),转移到PVDF膜上,并分析抗人类纤维蛋白原(F4200-06 ,US Bibiolation,Western,1:2,000)。使用ImageJ分析了每种蛋白质物种(即γ–γ二聚体,β链)的带强度 ,并在0 h时点标准化为相应的带。蛋白质印迹的负载控制是在纤维蛋白凝块中添加纤溶酶之前的时间点0 。
通过与人IgG1 FC的小鼠IgG2B FC的FC交换合成了5B8-HUFC抗体。将96孔ELISA板(Greiner)与25μgml-1 IgG缺失的纤维蛋白涂覆,并在阻止缓冲液中孵育1小时,然后在5B8-HUFC抗体中添加50μl。如先前所述 ,从IgG中耗尽了无纤溶酶原纤维蛋白原17。在0.5%BSA和0.05%Tween-20(稀释剂)的PBS中,将抗体从0.0002μm的三倍浓度稀释至15μm 。对于没有预孵育的竞争ELISA,将5B8-HUFC与150 nm三聚体峰一起在稀释剂中(100μl总体积)在纤维蛋白板上的37°C下2 h孵育2小时。对于具有抗体预孵育的ELISA ,将50μl的5B8-HUFC在37°C下在纤维蛋白板上孵育2小时,然后在37°C的抗体中添加50μl150nm的三聚尖峰并孵育2小时。随后,在25°C下与HRP耦合抗HIS TAG抗体(MAB050H ,R&D Systems,1:2,000)一起孵育1小时 。通过与TMB/E底物(Chemicon-Millipore)孵育ELISA,并使用Synergy H4板读取器(Biotek)在450 nm处测量吸光度。
如先前所述17,60 ,使用5 µM DHE(Invitrogen)进行BMDM培养和ROS检测。简而言之,将细胞铺在96孔黑色μ-clear底部的微晶板(Greiner Bio-One)上,预先涂在带有或没有重组峰的12.5 µg Ml-1纤维蛋白(0.168、1.68和3.36 µm),Spike PVS或BALD PVS 。对于纤维蛋白抑制 ,将5B8或IgG2b(每个20μgml-1)(MPC-11,Bioxcell)添加在纤维蛋白中,有或没有3.36 µm重组尖峰涂层的孔均2小时 ,然后再铺平。将细胞在纤维蛋白上孵育24小时,并使用Spectramax M5微板读取器在518 nm/605 nm处检测到DHE荧光。由于巨噬细胞的激活可能受细胞培养条件的影响,因此热灭活的胎儿牛血清和巨噬细胞刺激因子被批量测试如前所述60 。由于PV的活性可以受到冻融周期的影响 ,因此所有实验均以新鲜融化并保持在37°C的病毒体进行。不使用重新元素样品。
为了测试纤维蛋白原与HIS标记的尖峰的相互作用,将Pierce共免疫沉淀试剂盒(Thermo Fisher Scientific)方案用于原始免疫沉淀/裂解缓冲液和修饰 。在800μl的800μl免疫沉淀缓冲液(50 mm Tris,pH 8.0 ,5%甘油,1%NP-40,100 mM NaCl)中以2:1的摩尔比为2:1 ,将100毫米NaCl混合,并用100×EDTA无eDTA蛋白酶蛋白酶抑制剂(热热渔夫科学)和37 hhot ot of con。将与抗纤维蛋白原抗体(SAFG-AP,酶研究实验室,1:1,000)结合的树脂珠添加到混合物中 ,并在37°C下旋转2小时。将结合的蛋白在60 µL的EB溶液中洗脱,并用1/10的1 M Tris中和pH 9.0。将洗涤缓冲液和EB溶液提前加热至37°C 。通过在4-12%凝胶上通过SDS-PAGE分离洗脱蛋白,转移至PVDF膜(Invitrogen) ,并与兔抗尖峰抗体(632604,Genetex,1:1,000)和绵羊抗纤维蛋白原抗体(SAFG-AP ,ENZ-AP,ENZ-CONJ,1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:抗兔(111-035-144 ,Jackson Immunoresearch; 1:10000)和抗sheep(HAF016,R&D Systems; 1:5,000)二级抗体。为了对尖峰PV进行免疫沉淀,使用了峰值抗体(GTX635693 ,Genetex; 1:1,600)识别SARS-COV-2 SPIKE(S2)。对于Spike PV免疫印迹,抗Spike(632604,Genetex,1:1,000)和抗P24 GAG(检测p55 ,1:100)抗体由Beckman Coulter61和Anti-Vpr(8D1,Cosmo Bio,1:200)抗体捐赠给Greene实验室 。使用Immobilon Forte Western HRP底物(Sigma-Aldrich)和Chemidoc成像系统(Bio-Rad)检测到蛋白质条。
为了评估体内SARS-COV-2感染 ,SARS-COV-2 B.1.351(beta)和SARS COV-2 B.1.617.2(delta)的病毒库存是在表达跨膜蛋白酶2(TMPRSS2)和ACE2(tmprss2)和ACE2(Vero-tmprss2-ace2-ace2-ace2)的Vero细胞上制备的。-80°C直至使用 。涉及β的实验是对雌性和男性WT C57BL/6,FGA - / - 和FGGγ390–396A小鼠(6-7个月大)进行的。β菌株包含尖峰RBD中的K417Y,E484K和N501Y取代 ,并与小鼠ACE2结合,在一系列实验小鼠菌株中诱导活性感染62,63,64。使用三角洲进行的实验是对雌性和男性为4-5个月大的K18-HACE2小鼠进行的 。为了感染,通过腹膜内注射使用每公斤氯胺酮100毫克与每公斤10 mg的每公斤氯嗪混合使用100毫克的动物。麻醉的小鼠收到I.N.在50μl无血清DMEM中给予病毒传染性接种物。对于每个实验 ,收集肺和脑组织 。将每只动物的左肺裂片和一个脑半球放入4%PFA中进行固定和组织学处理。将剩余的肺组织大致切碎,并在预灌注的锆珠管(基准科学)中加工以进行匀浆。匀浆存储在-80°C。其余的脑半球是闪烁的,并存储在-80°C下 。这项研究的所有方面均由UCSF的环境健康与安全办公室批准。配备有动力空气释放呼吸器的人员在生物安全3级实验室中与SARS-COV-2合作。
通过牙菌斑测定评估肺匀浆的病毒浓度 。简而言之 ,将Vero-Tmpress2-ACE2细胞以每个孔的浓度为2×105细胞铺在12孔板上。在无血清DMEM中的101、102 、103、104、105和106的稀释系列中添加匀浆。将匀浆稀释液在细胞上孵育1小时,然后用2.5%的Avicel覆盖井中的培养基(Dupont,RC-591) 。将细胞孵育72小时,然后去除覆盖层 ,并将细胞固定在10%福尔马林中1小时,并用晶体紫罗兰色染色以可视化PFU。
HEK293T cells (3.75 × 106) were plated in a T175 flask and transfected 24 h later with 90 μg of polyethyleneimine (PEI; Sigma-Aldrich), 30 μg of HIV-1 NL4-3 ∆ Env eGFP (NIH AIDS Reagent Program) or 3.5 μg of pCAGGS SARS-CoV-2 trimeric spike glycoprotein(NR52310,BEI资源)总共有10 mL Opti-Mem培养基(Invitrogen)。第二天 ,将培养基替换为DMEM10完整培养基,并将细胞在37°C的5%CO2中孵育48小时 。然后收集上清液,用0.22 µm steriflip滤波器(EMD ,Millipore)过滤,并在4°C下以25,000 rpm进行超级离心。除去浓缩的上清液,将颗粒(病毒颗粒)重悬于含1%胎牛血清的冷1×PBS中 ,并将等分试样存储在30级实验室中的-80°C下。对于未表达峰值糖蛋白(秃头)的对照病毒颗粒的产生,使用了相同的过程,但随着PCAGGS SARS-COV-2尖峰矢量转染的省略 。HIV Env伪型病毒颗粒也使用相同的过程产生 ,使用HIV89.6双重热带(X4和R5)表达载体(NIH AIDS试剂程序)而不是尖峰表达载体。
将小鼠用异氟烷麻醉,尖峰PVS或秃头PVS(对照)(100 µL)缓慢地注入带有BBD 0.3 ml胰岛素注射器的恢复轨道上丛中,该胰岛素附着于29量指针。3分钟后,将针头缓慢提取 ,并允许小鼠恢复。由于PV的活性可以受到冻融周期的影响,因此所有实验均以新鲜融化并保持在37°C的病毒体进行 。不使用重新元素样品。SARS-COV-2尖峰PV施用到3至4个月大的小鼠。
C57BL/6只小鼠(4-5个月大)被SARS-COV-2 B.1.351(Beta)感染104 PFU 。在5和7 d.p.i上,给出了每公斤5B8-HUFC抗体的腹膜内30毫克。在7 d.p.i上 ,将小鼠灌注盐水,然后用4%PFA固定。随后,将大脑固定在同一固定剂中 ,并在30%的蔗糖中冷冻保护 。将脑半球在OCT中冷冻并切开(10 µM切片)。将矢状脑切片与0.1%苏丹黑色(溶解在70%乙醇中)孵育10分钟,透化/阻断3%BSA和3%NDS,在含有0.1%Triton X-100的PBS中孵育1小时。将切片与纤维蛋白原的抗体(1:2,000)一起孵育过夜 ,其次是Alexa Fluor 594驴抗兔IgG(1:1,000; Jackson Immunoresearch)持续1小时 。为了检测大脑中的5B8-HUFC抗体,将切片用F(AB')2-Donkey抗人类IgG(H+L)交叉吸附的二级抗体FITC(AB102424,ABCAM ,1:300)染色1 h。这些部分用玻璃盖覆盖,并用延长的钻石抗固定固定试剂(Thermo Fisher Scientific)密封,并保持在4°C直至成像。
对于SARS-COV-2-B.1.351感染的预防性药理治疗,抗古纤维蛋白抗体5B817或同种型匹配的IgG2b(MPC-11 ,生物XCELL)对照在30 mg in Kg in kg in kg in kg in 30 mg in kg中静脉内给予5--至6-mons c57的retro-Orbital注入 。然后,1小时后,将小鼠通过I.N.给予104 PFU的β。最终体积50μl的路线。在3天内对β的小鼠安乐死进行组织学分析。对于SARS COV-2 B.1.617.2(Delta)感染 ,4至5个月大的K18-HACE2小鼠通过静脉注射以每公斤30毫克的静脉注射给出5B8或IgG2b,在三千克1 h静脉内感染前30 mg 1 H,每48 h in 48 h in paperaperitonally intaperaineNally in topaperationally and in taperaperityally and eartaperationally and the 3 d.p.p euthanive at euthanive at 3 d.p.ppp.ii euthaniped 。对于治疗治疗 ,在1 d.p.i时以每公斤30 mg的剂量腹膜内给予5B8或IgG2b。如上所述,在5至6个月大的C57BL/6小鼠或三角洲中,在4至6个月大的C57BL/6小鼠或Delta中含有103 pfu ,如上所述,此后每48 h,此后每48 h。这些动物在7或9 D.P.I.对于尖峰PV ,通过恢复轨道注射在注射PVS前15分钟以每千克30毫克的静脉注射给C57BL/6小鼠5B8或IgG2b同种型对照 。先前已经描述了5B8和剂量的给药17。腹膜内的小鼠单克隆抗体的给药可持续释放到血液中,因此通常用于评估抗体的临床前疗效,这些抗体最终将在临床中静脉内静脉内递送65,66,67。
小鼠肺和大脑中的组织病理学分析在冷冻或石蜡节上进行17,68,69 。在研究中未收集串行切片。用血久毒素,曙红和三色染色将肺切片染色。使用了以下抗体:兔抗SARS-COV-2核蛋白酶(GTX135357 ,Genetex,1:500),小鼠抗SARS-COV-2 SPIKE(1A9 ,Genetex,1:100),绵羊抗纤维蛋白原(F4200-06 ,f4200-degrincogent,from of j.300 degrinial ant)1:500),大鼠抗小鼠/人MAC2(M3/38 ,Cedarlane,1:500),鼠标抗GP91Phox(53/gp91-Phox ,BD Biosciences,1:500),1:500),大鼠抗小鼠CD335(NKP46)(NKP46)(NKP46)(NKP46)(NKP46)(NKP46)(29AA1.4 ,BD BISCISESS,1:500),鼠标 ,1:500),1:500 。(PK136,Invitrogen ,1:250)和兔抗甘酶A(PA5-119160,Invitrogen,1:500)。用低温恒温器将大脑切成30μm-厚的冷冻切片 ,以进行自由浮动的免疫染色。The following antibodies were used: rabbit anti-IBA1 (019-19741, Wako, 1:1,000), rat anti-mouse CD68 (FA-11, BioLegend, 1:500), guinea pig anti-NeuN (A60, Sigma-Aldrich, 1:500), rat anti-myelin basic protein (ab7349, Abcam, 1:100) and rabbit抗加尔伯丁素(CB38A,Swant; 1:5,000) 。将组织切片在PBS中洗涤,并在封闭和透化缓冲液中孵育 ,该缓冲液由补充0.2%Triton X-100和5%BSA的PBS组成,在25°C下持续1小时。对于小鼠初级抗体,将切片在M.O.M.中孵育。(小鼠免疫检测试剂盒,载体实验室)小鼠IgG阻断试剂在含有0.2%Triton X-100和5%BSA的PBS中稀释 ,然后使用M.O.M.在室温下稀释5分钟。将切片用含有0.1%Triton X-100的PBS冲洗两次,并在4°C下与一抗孵育过夜 。将所有组织切片用含有0.1%Triton X-100的PBS洗涤,并与以下次级抗体一起孵育:山羊抗兔Alexa Fluor 488(A-11008 ,Thermo Fisher Scientific,1:1,000),山羊抗Mouse Alexa Fluor 568(A-11000041 ,A-11000041,A-Alexa Fluor 568) Thermo Fisher Scientific,1:1,000)或山羊抗鼠Alexa Fluor 647(A-21247 ,Thermo Fisher Scientific,1:1,000),并用DAPI染色。将切片安装在磨砂显微镜载玻片(Thermo Fisher Scientific)上 ,上面覆盖着玻璃盖板,并用延长的钻石抗固定式安装试剂(Thermo Fisher Scientific)密封,并保持在4°C直至成像。
Tissue sections were imaged using a laser-scanning confocal microscope FLUOVIEW FV3000RS “Snow Leopard” (Olympus) or Fluoview FV1000 (Olympus), a 40 × and 0.8 NA water-immersion lens or 60× oil-immersion UPLSAPO objective (NA = 1.35) and FV31S-SW software v.2.3.2.169(奥林巴斯) 。用405 nm激光和430/70光谱检测器顺序捕获单个通道,用于DAPI ,488 nm激光器和500/40的光谱检测器,用于Alexa Fluor 488,561 nm激光器 ,570/620高 - 620高效率检测器的Alexa fluor 568和A 650/a 650-NMAlexa Fluor 647的高敏探测器(Olympus truspectral探测器技术)。使用fiji v.2.1.0/imagej v.1.53c处理捕获的图像。
为了分析纤维蛋白原,尖峰或PV的立体定位注射后的小胶质细胞,选择了五个罗cau的冠状脑切片内的call体call体进行定量17 。在感染了β或三角洲的小鼠中量化IBA1 ,CD68,CALBINDIN或NEUN+细胞,在皮质中(对于Calbindin或neun)中的海马三个区域(用于IBA1或CD68)或两个区域(用于Calbindin或neun) ,在三个Mediorped Space sagitaped sagittal sagittal Brain consentence consentence consentence consentence in Anatom in anat Anatom semions contemions contections s of。对于β感染的小鼠的肺病理学,从三个肺切片中选择了六个或七个代表性区域。选择N蛋白阳性区域进行胶原蛋白定量 。在从三个肺切片中选择的五个代表性区域进行了注射PV的小鼠的肺病理学。在Python 3中用Jupyter笔记本计数免疫染色的细胞。简而言之,手动设置任意阈值并用于数据集中的所有图像 。使用函数peak_local_max从开源弹丸Python图像处理库估算每个图像的总单元格 ,该库返回图像中局部峰的坐标和数量(https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.peak_local_max)。如先前所述,使用fiji(ImageJ)对纤维蛋白原免疫反应进行定量70。Python图像加工用于在肺组织中共定位纤维蛋白原和峰值蛋白。简而言之,编写了jupyter笔记本,以估计肺组织中峰值和纤维蛋白原之间荧光信号重叠的量 。从弹丸Python图像处理库中的OSTU过滤器被用来对每个图像的标记和纤维蛋白原标记(https://scikit-image.org/docs/0.13.x/api/skimage.filters.filters.filters.html#skimage.filters.filters.thrordtorhord.threstrelort.threstrestreoldsu)。阈值后 ,比较了每组图像,并将像素分为四个类别:尖峰和纤维蛋白原重叠,仅尖峰信号 , 仅纤维蛋白原信号,没有信号。在每个图像中,图像中的像素的总数以及仅计算出峰值 ,仅纤维蛋白原或两者的像素的数量 。使用从扩展数据2中指示的所有图像中收集的所有图像的FOV计算相关性。1B,C和9F评估整个数据集的分布。为这些图形选择的所有图像都代表了每个实验组的免疫染色的定量 。
分离肺(3 d.p.i.),并用液氮来捕集肺部 ,并储存在-80°C下。使用RNeasy Plus迷你试剂盒(Qiagen)分离RNA样品。如所述21,60进行了cDNA,测序,原始计数 ,映射和计数的质量控制 。通过定量PCR在肺组织中证实了用于基因表达分析的样品,以证实病毒载量,以表达beta变体的N5。RNA质量较差或无病毒负荷的样品被排除在进一步分析之外。研究中包括所有通过RNA质量控制的样品 。每组使用至少三个重复,并且从研究中滤除了百万分之0.1(CPM)的基因。然后使用骨化器进行归一化 ,并使用EDGER71测定差异表达的基因。通过Benjamini – Hochberg方法计算错误的发现率(FDR)。对于NK细胞RNA-Seq,调整后的P< 0.1 (two-sided quasi-likelihood F-test with Benjamini–Hochberg correction) was used for visualization in Fig. 3a. The CPM of each gene was normalized across all of the samples to generate z-scores for heat maps of gene expression. Differentially expressed genes significantly changed in uninfected mice were not included in the analysis. For pathway analysis, gene lists were ranked using log2-transformed fold change of differentially expressed gene between two groups. Fibrin-induced macrophage scRNA-seq data were obtained from ref. 21 (GSE229376). GSEA was performed using GSEA v.4.2.3 with 1,000 times permutation and collapsing mouse genes to the chip platform Mouse_Gene_Symbol_Remapping_Human_Orthologs_MSigDB.v7.5.1.chip. The MSigDB gene sets: H: Hallmark and C2: CP: Canonical pathways (KEGG, REACTOME, WikiPathways) were used for pathway analysis. The fibrin NK suppression network was generated using Cytoscape (v.3.7.2)72. Using differentially altered pathways generated by GSEA (described earlier), the network was visualized using the default setting of EnrichmentMap.
NK cells were purified from splenocytes of C57BL/6 mice using the NK cell isolation kit (Miltenyi Biotec). NK cells were stimulated with IL-15 (50 ng ml−1, BioLegend) for 4 days with or without fibrin. Flow cytometry staining and analyses were performed as described previously21,60. For NK cell surface and intracellular staining, NK cell suspensions were first incubated with TruStain FcX PLUS (S17011E, BioLegend) for 15 min at 4 °C, then stained with surface markers for 30 min at 4 °C. Cells were then fixed and permeabilized using the BD Fixation/Permeabilization Kit (554714, BD). Intracellular markers were incubated for 1 h at 4 °C and analysed using the LSR Fortessa flow cytometer (BD Biosciences) the same day. For IFNγ staining, NK cells were incubated with phorbol 12-myristate 13-acetate (P8139, Sigma-Aldrich) and ionomycin (I0634, Sigma-Aldrich) for 4 h in the presence of brefeldin A (B7651, Sigma-Aldrich) followed by surface staining and fixation/permeabilization protocol described above. Anti-IFNγ antibodies were incubated in perm/wash buffer overnight, and then analysed with LSR Fortessa flow cytometer (BD Biosciences) the same day. Antibodies were as follows: NK1.1-FITC (S17016D, BioLegend, 1:200), IFNγ-PE (XMG1.2, BioLegend, 1:200), granzyme B-PerCP/Cy5.5 (QA16A02, BioLegend, 1:200), Ki-67-PE (16A8, BioLegend,1:200), CD45-Brilliant Violet BUV737(30-F11, BD, 1:200), CD11b-Brilliant Ultraviolet 395 (M1/70, BD, 1:200), CD335-Brilliant Violet 421 (clone 29A1.4, BioLegend,1:100), CD54-PE (YN1/1.7.4, BioLegend, 1:200), CD314-APC (CX5, BioLegend, 1:200), LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (L34957, Thermo Fisher Scientific, 1:500). All data were processed using FlowJo v.10.7.1 (BD Biosciences). Doublets and dead cells were excluded before analysis of NK cell phenotypes. NK cells were gated as CD45+CD3−NK1.1+. For NK cell depletion, anti-mouse NK1.1 (PK136, BioXCell), which depletes NK cells73,74,75, or isotype control IgG2a (C1.18.4, BioXcell) were administered intraperitoneally at 8 mg per kg at 3 and 1 days before infection of 5- to 7-month-old mice.
For bulk RNA-seq analysis of mouse NK cells, purified NK cells from splenocytes of C57BL/6 mice were stimulated with IL-15 (50 ng ml−1, BioLegend) for 4 days with or without fibrin. NK cells were stained with anti-CD3 (145-2C11, BD, 1:200), anti-NK1.1 (S17016D, BioLegend, 1:200), anti-CD45 (30-F11, BioLegend, 1:200) and aqua live/dead fixable dye on ice for 20 min. The CD45+CD3−NK1.1+ live NK cells were sorted into 1.5 ml tubes with 1 ml of Buffer RLT Plus with 1% β-mercaptoethanol. RNA samples were prepared using the RNeasy Plus Micro Kit according to the manufacturer’s instructions. The cDNA library generation, quality control, sequencing and downstream analysis are performed as above.
Human NK cells were isolated from freshly collected PBMCs (AllCells) using the NK cell Isolation Kit, Human (Miltenyi Biotec). In total, 5 × 106 NK cells were plated on each well of a six-well plate treated with or without fibrin for 1 h at 37 °C. Phosphoproteomic analysis was performed as described previously21,32. The samples were washed twice with cold PBS, lysed in 6 M guanidine hydrochloride (Sigma-Aldrich), then boiled at 95 °C for 5 min, and stored on ice until sonication. Lysed samples were sonicated using a probe sonicator for 15 s at 10% amplitude, and protein was quantified by Bradford assay. Approximately 500 µg of protein sample was used for further processing, starting with reduction and alkylation using a 1:10 sample volume of tris-(2-carboxyethyl) (TCEP) (10 mM final) and 2-chloroacetamide (40 mM final) for 5 min at 45 °C with shaking at 1,500 rpm. Before protein digestion, the 6 M guanidine hydrochloride was diluted sixfold with 100 mM Tris-HCL (pH 8) to permit trypsin activity. Trypsin was then added at a 1:100 (w/w) enzyme:substrate ratio and placed in a thermomixer at 37 °C overnight (16 h) with shaking at 800 rpm. After digestion, 10% trifluoroacetic acid (TFA) was added to each sample to reach a final pH of 2. The samples were desalted using a vacuum manifold with 50 mg Sep Pak C18 cartridges (Waters). Each cartridge was activated with 1 ml 80% acetonitrile/0.1% TFA, then equilibrated with 3 × 1 ml of 0.1% TFA. After sample loading, the cartridges were washed with 3 × 1 ml of 0.1% TFA, and the samples were eluted with 1 × 0.8 ml 50% acetonitrile/0.25% formic acid. The samples were dried by vacuum centrifugation. The High-Select Fe-NTA phosphopeptide enrichment kit (Thermo Fisher Scientific) was used according to the manufacturer’s instructions with minor modifications for phosphopeptide enrichment. In brief, the samples were suspended in approximately one-third of the recommended binding/wash buffer volume (70 µl). After equilibrating the spin column, the resin slurry was resuspended in 210 µl of binding/wash buffer and divided into thirds. Each third of the resin was used for one sample. Tryptic peptides were mixed with the resin in a separate protein LoBind tube (Eppendorf) and incubated for 30 min (at room temperature) on a thermomixer at 800 rpm. The samples were transferred on top of a 20 µl filtered tip, washed three times with binding/wash buffer and once with HPLC-grade water. The bound phosphopeptides were eluted with 70 µl elution buffer, and the pH was brought down immediately to nearly three with formic acid (10% (v/v) in HPLC-grade water). All of the samples were dried by vacuum centrifugation and stored at −80 °C until further analysis.
Dried phosphopeptides were resuspended in 0.1% (v/v) formic acid (Sigma Aldrich) in water (HPLC grade, Thermo Fisher Scientific) and analysed on the timsTOF HT mass spectrometer (Bruker Daltonics), paired with a Vanquish Neo ultra-high-pressure liquid chromatography system (Thermo Fisher Scientific). The samples were directly injected onto a PepSep C18 reverse-phase column (15 cm, 150 µm inner diameter, 100 Å pore size, 1.5 µm particle size with UHP inlet, Bruker Daltonics) connected to a captive spray emitter (ZDV, 20 µm, Bruker Daltonics). Mobile phase A consisted of 0.1% (v/v) formic acid in water (HPLC grade, Thermo Fisher Scientific) and mobile phase B consisted of 0.1% (v/v) formic acid in 100% acetonitrile (HPLC grade, Thermo Fisher Scientific). Peptides were separated on a gradient from 3% to 25% mobile phase B over 47 min, followed by an increase to 45% B over 8 min, then to 95% over 1 min, and held at 95% B for 4 min for column washing at a flow rate of 200 nl min−1. Eluted peptides were ionized in a CaptiveSpray source (Bruker Daltonics) at 1,700 V. Raw data were acquired in data-independent acquisition coupled with parallel accumulation–serial fragmentation (dia-PASEF) mode with an optimized isolation window scheme in the m/z versus ion-mobility plane for phosphopeptides. The ion accumulation time and ramp times in the dual TIMS analyser were set to 100 ms each. For dia-PASEF, in the ion mobility (1/K0) range 0.6 to 1.50 Vs cm−2, the collision energy was linearly decreased from 59 eV at 1/K0 = 1.6 Vs cm−2 to 20 eV at 1/K0 = 0.6 Vs cm−2 to collect the MS/MS spectra in the mass range 400.2 to 1,399.3 Da. The estimated mean cycle time for the dia-PASEF windows was 1.38 s. The raw files were processed with Spectronaut (v.18.5, Biognosys) using its library-free DIA analysis with directDIA+ (Deep) search algorithm. Carbamidomethylation (cysteine) was set as a fixed modification for database search. Acetylation (protein N-term), oxidation (methionine), and phosphorylation (serine, threonine, tyrosine) were set as variable modifications. Reviewed human protein sequences (downloaded from UniProt, 6 October 2023) were used for spectral matching. The FDRs for the PSM, peptide and protein groups were set to 0.01, and the minimum localization threshold for PTM was set to zero. For MS2 level area-based quantification, the cross-run normalization option was unchecked (normalization was performed later using MSstats, see below), and the probability cut-off was set to zero for the PTM localization. We detected between 4,000 and 7,000 phosphorylated peptides per sample with an average percentage of phosphorylated to non-phosphorylated peptides of 73%.
Quantification of phosphorylation differences was performed using artMS as a wrapper around MSstats76, through functions artMS::doSiteConversion and artMS::artmsQuantification with the default settings. All peptides containing the same set of phosphorylated sites were grouped and quantified together into phosphorylation site groups. One sample outlier in intensity and peptide detection was discarded before quantitative analysis; unstimulated (mock) 1 h (PRIDE sample ID TOF01641_2_1_1683). For both phosphopeptide and protein abundance MSstats pipelines, MSstats performs normalization by median equalization, no imputation of missing values and median smoothing to combine intensities for multiple peptide ions or fragments into a single intensity for their protein or phosphorylation site group. Lastly, statistical tests of differences in intensity between infected and control timepoints were performed. When not explicitly indicated, we used the default settings for MSstats for adjusted P values. By default, MSstats uses the Student’s t-tests for P value calculation and the Benjamini–Hochberg method of FDR estimation to adjust P values. Kinase activities were estimated using known kinase–substrate relationships from the OmniPath database77. Kinase activities were inferred as a z-score calculated using the mean log2-transformed fold change of phosphorylated substrates for each kinase in terms of standard error (Z = [M − μ]/s.e.), comparing fold changes in phosphosite measurements of the known substrates against the overall distribution of fold changes across the sample. To compare all phosphorylation sites across experimental groups as previously described32, a P value was also calculated from log2-transformed fold changes of all detected phosphorylation sites using a two-tailed Z-test method as shown in Fig. 3c, Extended Data Fig. 7b and Supplementary Tables 8–10. Network reconstruction and enrichment analysis of phosphoproteomics data were performed as described previously22.
Formalin-fixed paraffin-embedded (FFPE) tissue was scrapped off into a 1.5 ml Eppendorf tube and deparaffinized with 1 ml of xylene for 2 min and then pelleted and washed with 1 ml of 100% ethanol. The samples were pelleted and incubated at room temperature until all of the residual ethanol had evaporated. Tissues were digested and RNA samples were isolated using the RNeasy FFPE Kit (Qiagen). The quantity was determined using the Nanodrop (Thermo Fisher Scientific) and the quality of RNA was determined on the Agilent Bioanalyzer. All of the samples passed quality control (>大于250个核苷酸的RNA的50%) 。基因表达测定是在NS_MM_HOSTRESPONDE_V1.0代码码上在纳米串NCounter机器上进行的。处理原始数据并进行归一化计数,未调整的P值 ,并使用两尾未配对的t检验与Nsolver生成log2转换的倍数变化值。为了进行途径分析,将每个基因的归一化计数在所有样品中归一化,以生成Z分数以进行基因表达的热图 。每个基因型的平均Z分数用于热图。5B8和IgG2b处理组之间的显着下调基因(p <0.05)是在簇式填充剂上使用富集函数确定途径的显着下调途径。前20个显着下调的途径用于生成网络 。
如前所述35 ,将纤维蛋白原立体定义地注入大脑中。用异氟烷麻醉小鼠,并放入立体定位设备(KOPF仪器)中。Alexa Fluor 488人类纤维蛋白原(Thermo Fisher Scientific)在25°C至1.5 mg ml -1(参考文献78)下溶解在0.1 M碳酸氢钠(pH 8.3)中,与峰值混合(4.6 mg ml -1) ,尖峰PVS(0.1 mg ml -l -1),bald pevs(0.1 mg ml -1),Bald PVS(0.1 MLD(0.1 MM)(0.1 MLD(0.1 MM)(0.1 MLD)(0.1 MLD(0.1 MM)(0.1 MLD)(0.1 MLD(0.1 MM)比率) ,并在37°C下孵育15分钟;将1.5μl的混合物立体定向在0.3μlmin-1中用10μl汉密尔顿注射器和33量规的针头注入4-1个至5个月大的C57BL/6小鼠的call体33 。用avertin麻醉小鼠,并在PBS中用4%PFA在心铁上灌注。去除大脑,在4%PFA中固定在4°C下过夜,用30%的蔗糖处理 ,切成30μm冠状切片,然后加工以进行免疫组织化学。图像是在具有平面脉素目标(×10/0.3 Na)的Axioplan II落叶显微镜(Zeiss)上获取的 。使用NIH ImageJ(V.1.50)对相似的解剖位置的图像进行了定量。
根据制造商的FFPE组织方案,使用RNASCOPE多重荧光测定法(ACD Bio)对带有Delta感染的小鼠的脑切片进行了RNA原位杂交。简而言之 ,将组织被脱蜡并在3%过氧化氢中孵育10分钟,然后通过在rnascope靶靶溶液(ACD BIO)中煮沸1小时进行抗原检索。将样品用rnascope蛋白酶和试剂(ACD BIO)在40°C下透化30分钟 。在40°C下将RNA探针与组织杂交2小时。ACD BIO(分别为498711-C3和435191-C3)设计了小鼠TREM2,CST7和SPP1的寡核苷酸探针。使用RNASCOPE多重荧光试剂盒V2(ACD BIO)扩增探针信号 ,并用TSA生动的荧光团570(Tocris,7526)检测 。对一个RNA探针进行染色,并使用RNA-蛋白共检测辅助试剂盒(ACD BIO)对IBA1(234 308 ,突触系统,1:500)进行了染色。使用蔡司Axioplan 2 Epifluorescep显微镜在×20中对载玻片进行成像,并使用ImageJ(NIH)分析了图像。手动计数每个图像中的IBA1-postive小胶质细胞 。TREM2 ,CST7或SPP1 mRNA与IBA1信号重叠的密集簇表明与疾病相关的基因表达小胶质细胞。
所有值报告为平均值±S.E.M.Shapiro -Wilk正态性测试79用于评估数据的正态分布。使用Brown -Forsythe test80验证了自然和对数尺度中的响应的方差假设的平等性 。使用配对的t检验进行了两个匹配的分支组之间的比较,其中两个匹配的分组的假设是对配对响应差异的假设。在非正态分布数据的情况下,使用Mann-Whitney U检验计算了两个独立组之间比较的P值,而该数据未违反相等的方差假设。对于涉及两组以上组的比较 ,使用一单或双向方差分析,然后进行Tukey的事后测试进行多次比较,用于满足正态分布和相等方差假设的数据 。当违反均等方差的假设时 ,将韦尔奇的t检验应用于log10转换的响应值,并使用Holm Method57校正了所得的原始P值以进行多次测试。对于生存分析和重量变化数据,分别使用对数秩(Mantel-Cox)测试和混合效应模型计算P值。样本量是通过先前的研究而不是统计方法确定的。对于所有体内实验 ,小鼠是随机的,并以盲目的方式对小鼠基因型,抗体或PV给药进行了实验 。在图像定量后揭示了基因型和治疗分配。对于散装RNA-SEQ和纳米弦实验 ,小鼠基因型和抗体治疗均盲目。对测试条件视而不见的SEM成像和图像采集 。在Akassoglou实验室进行了纤维蛋白原与尖峰的结合的生化研究,并在Greene实验室和测定开发和药物发现核心中独立验证,结果相似。
有关研究设计的更多信息可在与本文有关的自然投资组合报告摘要中获得。
本文来自作者[admin]投稿,不代表象功馆立场,如若转载,请注明出处:https://m1.xianggongguan.cn/zixun/202506-896.html
评论列表(3条)
我是象功馆的签约作者“admin”
本文概览: C57BL/6只小鼠和K18-HACE2小鼠(应变:B6.CG-TG(K18-ACE2)2PRLMN/J)购自杰克逊实验室。FGA - / - 小鼠52和FGGγ390–...
文章不错《纤维蛋白在Covid-19中驱动血栓炎和神经病理学》内容很有帮助